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Abstract

It is now an accepted fact that stochastic mortality – the risk that future trends in
mortality are different from those anticipated – is an important risk factor in both
life insurance and pensions. As a risk factor it affects how we calculate fair values,
premium rates, and risk reserves.

In this paper we discuss theoretical frameworks and models for pricing mortality
derivatives and valuing liabilities which incorporate mortality guarantees. Models
developed within one of these frameworks also facilitate the calculation of risk (or
quantile) reserves and in a way that is consistent with an arbitrage-free pricing
framework. The objective of the paper is to provide a foundation for further work
which will look at the practical development and implementation of such models.

The different frameworks that we describe are all based on positive-interest-rate
modelling frameworks since the force of mortality can be treated in a similar way to
the short-term, risk-free rate of interest. The frameworks discussed are short-rate
models, forward-mortality models, positive-mortality models and mortality market
models.

Keywords: stochastic mortality, term structure of mortality, survivor index, spot
survival probabilities, spot force of mortality, forward mortality surface, short-rate
models, forward mortality models, positive mortality framework, mortality market
models, annuity market model, SCOR market model.
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1 Introduction

A large number of products in life insurance and pensions by their very nature have
mortality as a primary source of risk. By this we mean that products are exposed
to unanticipated changes over time in the mortality rates of the appropriate refer-
ence populations. For example, annuity providers are exposed to the risk that the
mortality rates of pensioners will fall at a faster rate than accounted for in their
pricing and reserving calculations. A more specific example is that of the Equitable
Life Assurance Society. The embedded options in a large number of their annuity
contracts became very valuable in the 1990’s due to a combination of falling interest
rates and improvements in mortality. It is possible that the eventual downfall of
this institution might have been avoided if they had been able to hedge their ex-
posures to both interest-rate risk and mortality improvement risk. The theory and
practice of interest-rate modelling within an arbitrage-free market is already well
developed (see, for example, Cairns, 2004b, James and Webber, 2002, Rebonato,
2002, Brigo and Mercurio, 2001, Brace, Gatarek and Musiela, 1997, Jamshidian,
1997, Heath, Jarrow and Morton, 1992, Cox, Ingersoll and Ross, 1985, and Vasicek,
1977). Previous literature in insurance mathematics has tended to focus on interest-
rate risks only, in combination with an assumption that mortality rates evolve in
a deterministic way over time. This paper combines both stochastic interest and
stochastic mortality and we develop a range of arbitrage-free frameworks for pricing
and hedging mortality risk.

Early actuarial work treated mortality rates at different ages as being constant
over time. Such an approach worked adequately in an environment dominated by
with-profits contracts in combination with prudent mortality tables. As contract
types evolved it was recognised that in certain cases calculations would require an
accurate, rather than a prudent, assessment of future mortality rates. This meant
that it would be necessary to build projected future improvements in mortality into
pricing and reserving calculations. An early table which took account of mortality
improvements was the a(55) table used in the UK. This was based on graduated
data for annuitants in 1947-48 with a projection to 1955. The next logical step was
the use of mortality forecasts and double-entry tables. This was considered by the
Joint Mortality Investigation Committee (JIMC, 1974, page 200) but they argued
that such a table “might lead those who will use the resulting tables to attribute to
them an authority which they do not possess”. Nevertheless, later tables in the UK
produced by the Continuous Mortality Investigation Bureau (CMI) moved on to use
deterministic double-entry tables (see, for example, the discussions in CMI, 1978,
1999).

Ultimately, the concern expressed in JMIC (1974) was well founded given that mor-
tality improvements in the 1980’s and 1990’s turned out to be greater than forecast.
This uncertainty was confirmed when Currie, Durban and Eilers (2004) (hereafter
CDE) analysed historical trends in mortality using P-splines. The fitted surface of
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values for the force of mortality2 µ̂(t, x) is plotted on a log scale in Figure 1.1 while
the development of the force of mortality for specific ages over time relative to val-
ues in 1947 is plotted in Figure 1.2.3 Figure 1.2 reveals some detail that we cannot
see in Figure 1.1: specifically that the rate of improvement has varied substantially
over time, and that the improvements have varied substantially between different
age groups. CDE constructed confidence bounds for the future development of mor-
tality rates. Inevitably these confidence bounds get wider as the forecast horizon
lengthens and CDE found that even 15-20 years ahead the bounds are very wide.
Thus although the CMI’s projections turned out to be inaccurate they were within
the confidence bounds suggested by CDE. In general terms the analysis of CDE, as
well as other analyses using stochastic mortality models discussed below, indicates
that future mortality improvements cannot be forecast with any degree of precision.
Short-term trends might be detected by keeping a close watch on recent medical ad-
vances, but even then the precise effect of such advances is difficult to judge. As we
look further into the future it becomes even more difficult to predict what medical
advances there might be, when they will happen, and what impact they will have
on survival rates.

More recently it has also become apparent that deterministic mortality projections
are inadequate for some applications, even where these are taken to be best estimates
rather than prudent estimates. Cases where stochastic approaches are sometimes
felt to be necessary include:

• Calculation of quantile (or Value-at-Risk) reserves. For example, a 99% quan-
tile reserve (if correctly calculated) should be sufficient 99% of the time to
meet all future contracted payments on a portfolio of liabilities. The uncer-
tain future pattern of liability payments will depend, amongst other things, on
the future evolution of the force of mortality µ(t, x).4 Indeed, the UK finan-
cial services regulator is currently discussing the use of stochastic mortality in
reserving calculations.

• Pricing and reserving for policies which incorporate certain types of guarantee.
For example, a guaranteed annuity option is an investment-linked deferred-
annuity contract which gives a policyholder the option to convert his accumu-
lated fund at retirement at a guaranteed rate rather than at current market
rates. The value of this option most obviously depends upon the level of in-
terest rates at retirement but it also depends upon the mortality table being
used by the life office at the time of retirement.

2The force of mortality µ(t, x) is described in more detail at the start of Section 2.
3Note that the limited amount of data at both low and high ages means that fitted values at

these ages have relatively large confidence bounds.
4Here, t represents the current time, x the age at time t of a specified life and the probability

that the individual will die between times t and t + dt given he has survived until the current time
is µ(t, x)dt + o(dt) as dt → 0 (that is, approximately µ(t, x)dt for small dt).
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Figure 1.1: Fitted values using P-splines for the force of mortality µ̂(t, x) for the
years t = 1947 to 1999 and for ages x = 11 to 100 from Currie, Durban and Eilers,
2004.
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Figure 1.2: µ̂(t, x)/µ̂(1947, x): Fitted values using P-splines for the force of mortality
µ̂(t, x), relative to the 1947 value for the years t = 1947 to 1999 and for ages x =
21, 31, 41, 51, 61, 71 and 81 from Currie, Durban and Eilers, 2004. It can be seen
that the pattern of improvements is different at different ages.
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• Pricing of mortality derivatives. Examples of such contracts include:

– survivor bonds (where coupon payments are linked to the number of sur-
vivors in a given cohort).5 The concept of survivor bonds which deal with
longevity risk6 has recently been revived by Blake and Burrows (2001)
and Lin and Cox (2004). Their origin dates back to Tontine bonds issued
by a number of European governments in the 17th and 18th centuries.

– survivor swaps (where counterparties swap a fixed series of payments in
return for a series of payments linked to the number of survivors in a given
cohort).7 The case for survivor swaps is made by Dowd et al (2004).

– annuity futures (where prices are linked to a specified future market an-
nuity rate).8

– mortality options (a range of contracts with option characteristics whose
payoff depends on an underlying mortality table at the payment date).
The guaranteed annuity contract mentioned above is an example a mor-
tality option, although it is really a complex option involving interest rate
risks as well. Contracts of this type are discussed further in Section 6.2.

For each of these derivatives, the reference population underlying the calculation of
the mortality rates is central to both the viability and liquidity of the contracts.
Specifically some investors will wish to use a contract to help hedge their mortality

5The first, widely-marketed, pure survivor bond was issued by Swiss Re in 2003. This was
a relatively short-term contract which allowed the issuer to reduce its exposure to 1-in-25-year
catastrophe risks (such as a severe outbreak of influenza, a major terrorist attack, or a natural
catastrophe). In this regard the bond is addressing a different type of mortality risk from that
being considered in this paper. The catastrophe risks being covered by the Swiss Re bond might
be correlated with financial markets (past examples include the terrorist attack in New York and
Washington on September 11, 2001, or the Kobe earthquake in 1995). In contrast, the types
of systematic mortality risks we consider in this paper are assumed to be uncorrelated with the
financial markets.

6We use in this context the term longevity risk to refer specifically to the risk that future
survival rates are higher than anticipated. For most of the remainder of the paper we will use the
more general term mortality risk to refer to all types of deviation from that anticipated in: (a)
experienced mortality and survival rates; and (b) mortality tables in use on a given future date.

7A small number of survivor swaps have been arranged on an over-the-counter basis. They
are not traded contracts and therefore only provide direct benefit to the counterparties in the
transaction.

8As an example, suppose that a(t, x) represents the market price at time t of a level annuity of
£1 per annum payable monthly in arrears to a male aged x at time t. (This might, for example, be
a weighted average of the top 5 prices in the market.) It is proposed that a traded futures market
be set up with a(t, x) as the underlying instrument for selected values of x and with a selection of
maturity dates stretching out many years into the future. For a given maturity date, the market
could be closed out some months or even a year before the maturity date itself, to reduce the
impact, for example, of moral hazard, changes in expensing bases, or the movements of individual
annuity providers in and out of the market.
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risks. If the reference population is quite different in nature from the specific mor-
tality risk facing the investor, then the investor (for example, a life office wishing
to hedge its exposure) will be exposed to significant basis risk and may conclude
that the mortality derivative is not worth holding. Other investors such as specu-
lators and hedge funds may be less interested in using these derivatives for hedging
purposes but will be interested in liquidity. Adequate liquidity will require a small
number of reference populations, but these will need to be chosen carefully to ensure
that the level of basis risk is relatively small for those investors hoping to use the
contracts for hedging purposes.

The evolution of the prices of these derivative contracts will reflect as accurately
as possible the stochastic evolution of µ(t, x). In addition, the pricing of these
contracts needs to take account of uncertainty over the future values of µ(t, x). This
happens in two ways. Most obviously, stochastic mortality has an impact on the
value of mortality options: the greater the volatility in mortality rates, the greater
is the value of a mortality option (as with equity options). However, the second
effect is more subtle and relates to how financial contracts are priced. For example,
the price of a contract based on expected cashflow may not be equal to the value
of the contract assuming that mortality follows the median projection. Also (in
line with the pricing of financial options) we may calculate expectations using a
different probability measure (later in this paper we shall denote this by Q) from
the real-world or true measure (which we shall denote by P ).

We do not discuss in this paper the many practical issues related to the securitization
of mortality risks. These issues are discussed elsewhere (see Cummins, 2004, Dowd
et al., 2004, and Lin and Cox, 2004).

It has been evident for many years that mortality rates have been evolving in an
apparently stochastic fashion. This is most obvious when one looks at a sequence
of mortality curves over a relatively long period of time (see, for example, Figures
1.1 and 1.2 as well as the papers by Forfar and Smith, 1987, Macdonald et al, 1998,
Willetts, 1999, Macdonald et al, 2003, and Currie, Durban and Eilers, 2004). These
sequences do exhibit a general trend, but the changes have an unpredictable element
not only from one period to the next but also over the long run.

Some recent studies have explicitly modelled the development of the mortality curve
over time as a stochastic process. Lee and Carter (1992) introduced a simple model
(see Appendix A) for central mortality rates which involves age-dependent and time-
dependent terms and applied their model to US population data. (See, also, Lee,
2000b.) The time-dependency is modelled using a univariate ARIMA time-series
model implying that changes in the mortality curve at all ages are perfectly corre-
lated. Statistical aspects of this work based on the same model for mortality rates
were improved upon by Brouhns, Denuit and Vermunt (2002) who applied the model
to Belgian data.

The possibility of imperfect correlation was investigated by Renshaw and Haberman
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(2003) who extend the Lee and Carter approach by adding a second time-dependent
set of changes. This means that changes in the mortality curve at different ages are
no longer perfectly correlated. Another approach based on time series was taken by
Felipe et al. (1998).

Some alternative approaches are proposed by Lee (2000a) and Yang (2001) (see
Appendix B). They take a deterministic projection of the mortality curve, q̂(t, x),
as given. They then apply an adjustment to this which evolves over time in a
stochastic way.

Milevsky and Promislow (2001) (see Appendix C) take a more theoretical approach
in continuous time which assumes that the force of mortality µ(t, x) has a Gompertz
form ξ0(t) exp(ξ1x) where the ξ0(t) term only varies over time and is modelled using
a simple mean-reverting diffusion process. Dahl (2003) (see Appendix D) also takes
a continuous-time approach and models for force of mortality using the affine class
of processes. In contrast, this paper does not deal with specific models. Instead we
provide a general formulation of the problem in continuous time. These frameworks
nort only incorporate all of the models mentioned above but provide a basis for the
development of other pricing models in the future.

Lin and Cox (2004) do not propose a specific model for stochastic mortality. Instead,
they apply the Wang (1996, 2000, 2002) transform for adjusting the projected mor-
tality rates into risk-neutral probabilities. This approach is gaining in popularity in
non-life insurance applications where there is a lack of liquidity in the instruments
subject to the underlying risks. However, it is not clear from Lin and Cox (2004)
how different transforms for different cohorts and terms to maturity relate to one
another to form a coherent whole.

In this paper we will take one step back from the use of specific models and inves-
tigate the different frameworks for stochastic mortality that can be used to develop
arbitrage-free models to price mortality-linked derivatives. The paper is focused
primarily on the pricing of new securities. However, the theory applies equally well
to the fair valuation of insurance liabilities which incorporate mortality derivatives.

In Section 2 we introduce the fundamental processes for mortality (the force of
mortality process µ(t, x)) and for the risk-free rate of interest (r(t)). These processes
feed into survivor indices S(u, y) and a risk-free cash account C(t) that play central
roles in our analysis. We work with two fundamental types of financial contract:

• pure endowment contracts for a full range of ages and terms to maturity; and

• default-free zero-coupon bonds for a full range of terms to maturity.

We then describe, by noting parallels with interest-rate and credit-risk theory, how
pure endowment contracts should be priced if they trade in a perfectly liquid, fric-
tionless and arbitrage-free market.9

9We do not claim that real-world markets are perfectly liquid or frictionless. However, we can
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In Sections 3 to 6 we describe the different frameworks that could be employed
to build up models for stochastic mortality. Each of these frameworks is drawn
from the field of interest-rate modelling but with the risk-free rate of interest r(t)
replaced by the force of mortality µ(t, x). These are all described in theoretical
terms: no specific models are proposed or analysed. Rather, the aim of the paper is
to leave readers with a choice of frameworks within which they can build their own
continuous-time stochastic mortality models.

2 The term structure of mortality

In this section we will define the basic components of a model for stochastic mortality.
We start by considering the force of mortality at time t for individuals aged x at
time t, which we denote by µ(t, x). Traditional static mortality models implicitly
assume that µ(t, x) ≡ µ(x) for all t and x. Deterministic mortality projections imply
that µ(t, x) is a determinstic function of t and x. The models we will consider here
will treat µ(t, x) as a stochastic process.

There are two types of stochastic mortality:

• The first is specific (or unsystematic) mortality risk – the risk that the actual
numbers of deaths deviate from anticipated numbers because of the finite
number of lives in a given cohort. This type of risk can largely be diversified by
investors if the usual assumption that future lifetimes for different individuals
are independent random variables is valid.10 Specific mortality risk therefore
does not result in the incorporation of a significant risk premium in the price
of mortality derivatives.

• systematic mortality risk – the risk that the force of mortality µ(t, x) evolves
in a different way from that anticipated. This type of risk cannot be diversified
away and therefore leads to the incorporation of a risk premium.

It follows that mortality derivatives might be priced using a risk-neutral probability
measure, Q, which is different from the real-world probability measure, P .11

state that if prices are calculated in the way proposed then even an illiquid market with frictions
will be arbitrage-free. Conversely, if we were to propose a pricing framework which violates the
conditions in Section 2 then the possibility of arbitrage would emerge over time as the market
becomes more liquid or trading costs begin to fall.

10Strictly speaking there may be some local dependencies such as thosed between husband and
wife, or those between people who die in the same event: particularly the more-significant catas-
trophe risks of the type being covered by the Swiss Re mortality bond (including, for example,
deaths cause by natural disasters or terrorist attacks).

11P is sometimes alternatively referred to as the true or objective or physical probability measure.
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2.1 Basic building blocks: the survivor index

We have previously indicated that our aim is to develop a set of theoretical frame-
works to price mortality derivatives. In order to do so, we will make the assumption
that the force of mortality at time t, µ(t, y), is observable at time t for all y.12

Furthermore this estimate is only calculated and published some months or years
after the event. The length of this delay depends considerably on the reference
population: for example, the UK industry-wide Continuous Mortality Investigation
tables take longer to compile than tables relating to one specific life office. These
are important practical issues but we will leave them for future work.

We will use as our basic building block a family of index-linked zero-coupon survivor
bonds. The indexes we will employ are related to survival probabilities for different
ages. Thus we define the survivor index

S(u, y) = exp

(
−

∫ u

0

µ(t, y + t)dt

)
.

Looking forwards from time 0 this index is a random variable and not a probability.
However, if µ(t, x) is deterministic then S(u, y) is equal to the probability that
an individual aged y at time 0 will survive to age y + u. Similarly, if µ(t, x) is
deterministic, for two dates t1 < t2 the probability that an individual aged x at time
t1 will survive until time t2 is S(t2, x− t1)/S(t1, x− t1).

If µ(t, x) is stochastic then S(u, y) can still be regarded as a survival probability,
but one that can only be observed at time u rather than at time 0. However, it
is straightforward to extract a survival probability by taking the expectation of a
random variable S(t, x) (equation (2.1) below). We prove this by using a combina-
tion of indicator random variables and conditional expectation. Thus, consider an
individual aged x at time 0. Let Yx(u) be a Markov chain which is equal to 1 if the
individual is still alive at time u. Also let Mt be the filtration generated by the
evolution of the term-structure of mortality, µ(u, x), up to time t. The real-world
or true survival probability, measured at time 0, that an individual aged x at time
0 survives until time u is

pP (0, u, x) = EP [Yx(u)]

= EP [EP (Yx(u)|Mu)]

= EP [S(u, x)]. (2.1)

More generally we can define the survival probabilities at time t as follows. Let
pP (t, u, x) be the probability under P that an individual aged x at time 0 and still
alive at the current time t survives until time u: that is,

pP (t, u, x) = EP [Yx(u)|Yx(t) = 1,Mt]

= EP

[
S(u, x)

S(t, x)

∣∣∣∣ Mt

]
.

12In reality the force of mortality at time t can only be estimated rather than directly observed.



2 THE TERM STRUCTURE OF MORTALITY 11

For the alternative risk-neutral probability measure Q, we can define the correspond-
ing survival probabilities:

pQ(t, u, x) = EQ[Yx(u)|Yx(t) = 1,Mt]

= EQ

[
S(u, x)

S(t, x)

∣∣∣∣ Mt

]
.

We are now in a position to consider the pricing of index-linked zero-coupon survivor
bonds. There is (potentially) a different bond for each maturity date T and for each
age x at time 0. We refer to a specific bond as the (T, x)-bond for compactness.

The (T, x)-bond pays the amount S(T, x) at time T . This payment is well defined
in the sense that S(T, x) is an observable quantity at time T . The (T, x)-bond is an
example of what financial mathematicians call a tradeable asset13: that is, an asset
that pays no coupons or dividends and whose price at any time t < T represents
the total return on an investment in that asset.14

To price such bonds we also need to make reference to the term-structure of interest
rates. Let P (t, T ) represent the price at time t of a zero-coupon bond that pays 1
at time T . The instantaneous forward rate curve at time t is given by

f(t, T ) = − ∂

∂T
log P (t, T )

and the instantaneous risk-free rate of interest is

r(t) = lim
T→t

f(t, T )

(see, for example, Cairns, 2004b). The cash (or money-market) account invests at
the risk-free rate of interest. Its value at time t is denoted by C(t) with

dC(t) = r(t)C(t)dt

⇒ C(t) = C(0) exp

(∫ t

0

r(u)du

)
.

Let Ft be the filtration generated by the term-structure of interest rates up to time
t, and Ht be the combined filtration for both the term-structure of interest rates
and mortality. If there exists a measure Q (the risk-neutral measure) equivalent to
the real-world measure P with

P (t, T ) = EQ

[
C(t)

C(T )

∣∣∣∣ Ft

]
13To financial economists this would be more commonly known as a pure discount asset.
14For an asset that does pay dividends or coupons a tradeable asset can be created by reinvesting

the dividends in the underlying asset itself.
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(which implies that P (t, T )/C(t) is a Q-martingale) then the dynamics of the zero-
coupon bond prices are arbitrage free.

Now let B̃(t, T, x) represent the price at time t of the (T, x)-bond that pays S(T, x)
at time T . If there exists a measure Q equivalent to the real-world measure P with

B̃(t, T, x) = EQ

[
C(t)

C(T )
S(T, x)

∣∣∣∣ Ht

]

for all T and x then the dynamics of the index-linked zero-coupon bond prices are
arbitrage free. This formula matches those of Milevsky and Promislow (2001) and
Dahl (2004) but encompasses a much wider range of models.

Assumption 1

We now make the assumption that the dynamics of the term structure of mortality
are independent of the dynamics of the term-structure of interest rates.

This assumption will allow us to separate pricing of mortality risk from pricing of
interest-rate risk. It follows that

B̃(t, T, x) = EQ

[
C(t)

C(T )

∣∣∣∣ Ft

]
EQ [S(T, x) | Mt]

= P (t, T )B(t, T, x)

where B(t, T, x) = EQ [S(T, x) | Mt] .

Thus B(t, T, x) is a martingale under Q. We can also assume that the B(t, T, x)
processes are strictly positive (barring the possibility of catastrophic events that
wipe out the entire population).

This allows us to make three further observations.

• B(t, T, x)/B(t, t, x) = pQ(t, T, x). Since we can regard the B(t, T, x) as spot
prices we will refer to the pQ(t, T, x) as spot survival probabilities.

• We can use the B(t, T, x) to define the forward force of mortality surface (we
will sometimes shorten this to forward mortality surface)

µ̄(t, T, x + T ) = − ∂

∂T
log B(t, T, x).

Conversely, knowledge of the forward mortality surface allows us to price the
bonds as follows:

B(t, T, x)

B(t, t, x)
= exp

[
−

∫ T

t

µ̄(t, u, x + u)du

]
.

If we take T = t, we get the spot force of mortality

µ(t, x + t) = µ̄(t, t, x + t).
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• Let us assume that the dynamics of the term structure of mortality are gov-
erned by an n-dimensional Brownian motion W̃ (t) under Q. The martingale
property of B(t, T, x) together with its positivity allows us to write down the
stochastic differential equation for B(t, T, x) in the following form

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t)

where V (t, T, x) is family of previsible vector processes which specify the
volatility term structure of the bond prices.

We will now consider the possible frameworks which we can use to model the dy-
namics of the B(t, T, x) processes. These correspond to a variety of frameworks used
in modelling interest rates (see, for example, Cairns, 2004b):

• short-rate models for the dynamics of the µ(t, y) (which correspond to short-
rate models for the risk-free rate of interest, r(t), such as those of Vasicek,
1977, Cox, Ingersoll and Ross, 1985, and Black and Karasinski, 1991);

• forward-mortality models for the dynamics of the forward mortality surface,
µ̄(t, T, x + T ) (corresponding to the framework of Heath, Jarrow and Morton,
1992);

• positive mortality models for the spot survival probabilities, pQ(t, T, x) (cor-
responding to the positive-interest models of Flesaker and Hughston, 1996,
Rogers, 1997, and Rutkowski, 1997);

• market models for forward survival probabilities or forward annuity prices
(corresponding to the LIBOR and swap market models of Brace, Gatarek and
Musiela, 1997, and Jamshidian, 1997).

Towards the end of the paper we also discuss the parallels between pricing mortality
derivatives and credit risk. We note that there are many similarities which allow the
transfer to our context of some intensity-based models that have been developed for
pricing credit risk.

3 Short-rate models

This type of framework explicitly models the dynamics of µ(t, y). Thus

dµ(t, y) = a(t, y)dt + b(t, y)′dW̃ (t)

where a(t, y) and b(t, y) (an n × 1 vector) are previsible processes and W̃ (t) is a
standard n-dimensional Brownian motion under the risk-neutral measure Q. We
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then have

B(t, T, x)

B(t, t, x)
= pq(t, T, x)

= EQ

[
e−

∫ T
t µ(u,x+u)du

∣∣∣ Mt

]
.

We can make the following observations about this framework:

• We have specified that W̃ (t) and b(t, y) are n × 1 vectors. This means that
we can allow for the possibility that short-term changes in the term-structure
of mortality can be different at different ages. Different rates of change at
different ages can also be achieved through the a(t, y) drift function.

• a(t, y) and b(t, y) might depend on other diffusion processes which are them-
selves adapted to Mt. Note that this dependence allows b(t, y) ≡ 0, in which
case the force of mortality curve evolves in a smooth fashion over time. How-
ever, the evolution of the force of mortality curve is still stochastic because of
its dependence on the stochastic drift rate a(t, y). Other models might assume
that b(t, y) 6= 0, in which case the force of mortality curve exhibits a degree of
local volatility.

• The assumption that b(t, y) ≡ 0 is equivalent to the assumption that the
volatility function V (t, T, x) for the B(t, T, x) processes tends to zero as T → t.
Thus, the shortest-dated bonds will have a very low volatility.

• This framework includes models that assume that µ(t, y) takes some para-
metric form (for example, the Gompertz-Makeham model µ(t, x) = ξ0(t) +
ξ1(t)e

ξ2(t)x). We can model the parameters in this curve as diffusion processes.
This class is a specific example of the type noted above where a(t, y) and b(t, y)
depend on a number of other diffusion processes.

The framework includes the affine class of models for µ(t, x) considered by Dahl
(2003), under which the spot survival probabilities have the closed form

pQ(t, T, x) = exp [A0(t, T, x)− A1(t, T, x)µ(t, x + t)]

with n = 1 dimension. Dahl provides sufficient conditions on a(t, y) and b(t, y) that
result in this affine representation for pQ(t, T, x). These conditions match those of
Duffie and Kan (1996) for interest-rate models (see, also, Vasicek, 1977, and Cox,
Ingersoll, and Ross, 1985). An important criterion of mortality models is that the
spot survival probability function pQ(t, T, x) is decreasing in T – otherwise this would
imply the potential for future negative mortality rates. One potential drawback of
this affine class is that the only models which ensure that pQ(t, T, x) is decreasing
in T requires the use of a mean-reverting process for µ(t, y). This mean reversion
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might be towards a time-dependent, but deterministic, local mean-reversion level,
in which case mortality improvements can be systematically built into the model.
However, if mortality improvements have been faster than anticipated in the past
then the mean reversion assumption implies that the potential for further mortality
improvements will be significantly reduced in the future. In extreme cases significant
past mortality improvements may be reversed if the level of mean reversion is too
strong. This is clearly a very strong assumption which is difficult to justify on the
basis of previous observed mortality changes and with reference to our perception
of the timing and impact of, for example, future medical advances. It may be that
one component of µ(t, y) is mean reverting. However, we believe that another more
dominant component of µ(t, y) should not be subject to mean reversion, since it is
impossible to predict the range and pace of future medical advances.

4 Forward mortality models

The next set of models are forward mortality models.

Suppose that we have the two stochastic differential equations

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t) (4.1)

and dµ̄(t, T, x + T ) = α(t, T, x + T )dt + β(t, T, x + T )′dW̃ (t) (4.2)

where V (t, T, x), α(t, T, x + T ) and β(t, T, x + T ) are previsible processes. In the
general arbitrage-free modelling context, what is the relationship between V (t, T, x),
α(t, T, x + T ) and β(t, T, x + T )? We provide an answer to this question which is
similar to that of Heath, Jarrow and Morton (1992) (HJM) approach. However, the
present context presents us with a richer and more complex modelling environment
with an additional dimension to consider compared with that of the classical HJM
framework.

From equation (4.2) we have

µ̄(t, T, x + T ) = µ̄(0, T, x + T ) +

∫ t

0

α(s, T, x + T )ds +

∫ t

0

β(s, T, x + T )′dW̃ (s)

⇒ µ(t, x + t) = µ̄(0, t, x + t) +

∫ t

0

α(s, t, x + t)ds +

∫ t

0

β(s, t, x + t)′dW̃ (s)

and S(t, x) = exp

[
−

∫ t

0

µ(s, x + s)ds

]

= exp
[
−

∫ t

0

µ̄(0, u, x + u)du−
∫ t

0

∫ t

u

α(u, s, x + s)ds du

−
∫ t

0

∫ t

u

β(u, s, x + s)′ds dW̃ (u)
]
.
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Next note that

B(t, T, x) = S(t, x) exp

[
−

∫ T

t

µ̄(t, s, x + s)ds

]

= exp
[
−

∫ T

0

µ̄(0, u, x + u)du−
∫ t

0

∫ T

u

α(u, s, x + s)ds du

−
∫ t

0

∫ T

u

β(u, s, x + s)′ds dW̃ (u)
]
. (4.3)

Now define V (u, T, x) = − ∫ T

u
β(u, s, x + s)′ds. We can then apply Ito’s formula to

B(t, T, x) in equation (4.3) to get the SDE

dB(t, T, x) = B(t, T, x)
[ (

1

2
|V (t, T, x)|2 −

∫ T

t

α(t, s, x + s)ds

)
dt

+V (t, T, x)′dW̃ (t)
]
.

(This confirms our earlier claim that V (t, T, x) = − ∫ T

u
β(u, s, x + s)′ds.)

Now we require the drift under Q to be zero. Therefore

1

2
|V (t, T, x)|2 =

∫ T

t

α(t, s, x + s)ds

and by taking the partial derivative with respect to T we get

α(t, T, x + T ) = −V (t, T, x)′β(t, T, x + T ).

As with the other frameworks, the challenge is to specify an appropriate form for
β(t, T, x+T ) or V (t, T, x). The chosen formulation needs to ensure that the forward
mortality surface remains strictly positive. This is most easily achieved by making
β(t, T, x + T ) explicitly dependent on the current forward mortality surface. In
addition, the chosen form needs to ensure that the spot force of mortality curve,
µ(t, y), retains an appropriate shape (for example, generally increasing with age).
How these criteria can be met we leave for further work!

5 The positive mortality framework

We now turn to our third class of models, the positive mortality framework.

Let P̃ be some measure equivalent to Q, and let A(t, x) be some family of Mt

adapted, strictly-positive supermartingales.

Define

pQ(t, T, x) =
B(t, T, x)

B(t, t, x)
=

EP̃ [A(T, x)|Mt]

A(t, x)
. (5.1)
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The strict positivity of A(t, x) means that pQ(t, T, x) is positive. The supermartin-
gale property of A(t, x) ensures that the pQ(t, T, x) are less than or equal to 1 and
decreasing in T > t. It is straightforward to demonstrate (for example, through the
application of the Radon-Nikodym derivative dQ/dP̃ ) that the resulting dynamics
of B(t, T, x) are appropriate for an arbitrage-free pricing model (see, also, Rogers,
1997, and Rutkowski, 1997). Within this pricing framework, the drift of A(t, x)
under P̃ is equal to −µ(t, x + t) × A(t, x). (In the corresponding positive-interest
model the drift of A(t) is equal to −r(t)× A(t) – see, for example, Cairns, 2004b.)

Equation (5.1) is deceptively simple as a pricing formula. However, the effort comes
in specifying a model for the processes A(t, x) and in calculating the expectations.
(For examples in interest-rate modelling see Flesaker and Hughston, 1996, Rogers,
1997, and Cairns, 2004a.)

A special case of this framework is an adaptation of Flesaker and Hughston (1996)
(FH). Let N(t, s, x) for 0 < t < s be a family of strictly-positive martingales under
P̃ . Define

A(t, x) =

∫ ∞

t

N(t, s, x)ds.

The martingale property of N(t, s, x) means that

EP̃ [A(T, x)|Mt] =

∫ ∞

T

N(t, s, x)ds (5.2)

< A(t, x). (5.3)

It follows from (5.3) that A(t, x) satisfies the Rogers/Rutkowski requirements for a
strictly-positive supermartingale.

Combining equations (5.2) and (5.1) we now get

pQ(t, T, x) =

∫∞
T

N(t, s, x)ds∫∞
t

N(t, s, x)ds
.

This turns the problem into one of devising an appropriate model for the family
N(t, s, x). From a computational point of view this involves, at worst, the numerical
evaluation of a one-dimensional integral. However, the challenge remains to specify
a suitable model of martingales for N(t, s, x).

It is common in interest-rate-derivatives markets to calibrate the initial term struc-
ture of the model to the observed interest-rate term structure. We can also apply
this approach to the mortality term structure. Suppose then that we take as given at
time 0 the market prices of the zero-coupon bonds, P (0, T ), and the (T, x)-bonds,
B̃(0, T, x), for all x and T > 0. From this we can derive the implied spot sur-
vival probabilities pQ(0, T, x) = B̃(0, T, x)/P (0, T ). The initial values for the family
N(t, T, s) can then be calibrated as follows

N(0, T, x) = − ∂

∂T
pQ(0, T, x) = µ̄(0, T, x + T )pQ(0, T, x).
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This initial calibration is unique up to a strictly-positive, constant scaling factor.

By analogy with interest-rate modelling, this framework might contain natural
model formulations that are difficult to identify in other frameworks. Again this
is left for further work.

6 Mortality market models

6.1 Introduction: change of numeraire

We come now to the mortality market models, and begin with some preliminaries
about the type of model.

Recall that the processes B(t, T, x) in a zero-interest environment are martingales
under Q with SDE’s

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t)

for appropriate previsible volatility functions V (t, T, x).15

Now consider some, strictly-positive, tradeable assets as numeraires. As a specific
first example consider B(t, τ, y) as the numeraire. We then consider processes of the
type

Z(t, T, x) =
B(t, T, x)

B(t, τ, y)
.

For most problems we are likely to consider it is likely that the most productive
choice of y will be x itself (since then Z(τ, τ, x) = pQ(τ, T, x)). If we then apply Ito’s
formula and the Product Rule we find that

dZ(t, T, x) = Z(t, T, x)
(
V (t, T, x)− V (t, τ, x)

)′(
dW̃ (t)− V (t, τ, x)dt

)
.

Now define a new process W τ,x(t) = W̃ (t)− ∫ t

0
V (s, τ, x)ds. Provided that V (t, τ, x)

satisfies the Novikov condition we can use the Girsanov theorem (see, for example,
Karatzas and Shreve, 1998) to infer that there exists a measure Pτ,x equivalent to
Q under which W τ,x(t) is a standard Brownian motion. We then have

dZ(t, T, x) = Z(t, T, x)
(
V (t, T, x)− V (t, τ, x)

)′
dW τ,x(t)

and we see that Z(t, T, x) is a martingale under Pτ,x.

15Readers who are familiar with interest-rate market models can consider unity as being the
numeraire.
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6.2 The annuity market model

6.2.1 Zero interest

For simplicity we will restrict ourselves initially to a market where interest rates are
set to zero. Non-zero stochastic interest rates will be added later.

Let

F (t, x) =
B(t, T, x)∑∞

s=T+1 B(t, s, x)

be a forward annuity rate under which survivors at T pay £1 at T and receive back
F (t, x) at times T + 1, T + 2, . . . so long as they are still alive at each of those
times.16 In the assumed zero-interest environment this contract has zero value at
time t. Note specifically that F (T, x) = 1/

∑∞
s=T+1 pQ(T, s, x) is the spot (market)

annuity rate at T .

This suggests the use of a different numeraire X(t) =
∑∞

s=T+1 B(t, s, x). Since X(t)
is a stricly-positive martingale we can write its SDE as

dX(t) = X(t)VX(t)′dW̃ (t)

for an appropriate previsible volatility function VX(t). Then

dF (t, x) = F (t, x)
(
V (t, T, x)− VX(t)

)′(
dW̃ (t)− VX(t)dt

)
= F (t, x)γ(t, x)′dWX(t)

where γ(t, x) =
(
V (t, T, x)− VX(t)

)
and WX(t) = W̃ (t)− ∫ t

0
VX(s)ds is a standard

Brownian motion under an appropriate measure PX equivalent to Q.

The standard modelling assumption for market models is to specify that γ(t, x)
is a deterministic function. It follows in this case that F (s, x) for t < s ≤ T is
log-normally distributed under PX with

EPX
[F (s, x)|Mt] = F (t, s)

and V arPX
[log F (s, x)|Mt] =

∫ s

t

|γ(u, x)|2du.

Now consider an annuity contract which includes a guaranteed annuity rate. In the
open market £1 at time T will secure a pension of F (T, x) per annum from time T
payable annually in arrears (assuming no expenses and a fair price). The contract

16Readers may be more familiar with a deferred annuity contract. Under this contract survivors
at t pay £1 at t in return for a defined series of payments at times T +1, T +2, . . . payable only to
those who are still alive at each of those times. In contrast, with the forward contract the purchase
price is not paid until time T , and then only by those who are still alive at that time.
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also includes a gaurantee that the amount of the pension will be K per annum (the
guaranteed annuity rate) if this rate is higher than the open market rate.

When we wish to value the guarantee we need to consider carefully the nominal
amount being converted into an annuity at T . We claim that the appropriate
amount is S(T, x). To see why, suppose that we have a group of N(t, x) lives
at time t aged x + t. At time T , N(T, x) of these individuals will still be alive.
Suppose that each of these survivors will have available a nominal amount of £1
for conversion into an annuity at T . Then, given MT , N(T, x) will have a bino-
mial distribution with parameters N(t, x) and S(T, x)/S(t, x) and expected value
κS(T, x) where κ = N(t, x)/S(t, x). Justification for our claim is concluded with
the developments leading up to equation (6.1) below where we see that N(T, x) is
conditionally independent of the mortality table in use at time T . This allows us to
replace N(T, x) by κS(T, s).

The total value of the contract at T is

N(T, x) max{F (T, x), K}
∞∑

s=T+1

pQ(T, s, x).

The value of the option itself at T is therefore

G(T ) =
N(T, x)(K − F (T, x))+

F (T, x)
.

Now the option itself is a tradeable asset with price G(t) at time t, so G(t)/X(t) is
a PX martingale. Hence

G(t)

X(t)
= EPX

[
G(T )

X(T )

∣∣∣∣ Mt

]

= EPX

[
N(T, x)(K − F (T, x))+

F (T, x)X(T )

∣∣∣∣ Mt

]

= EPX

[
EPX

(
N(T, x)(K − F (T, x))+

F (T, x)X(T )

∣∣∣∣ MT

) ∣∣∣∣ Mt

]

= EPX

[
EPX

(N(T, x) | MT )
(K − F (T, x))+

F (T, x)X(T )

∣∣∣∣ Mt

]

= EPX

[
κS(T, x)

(K − F (T, x))+

F (T, x)X(T )

∣∣∣∣ Mt

]
(6.1)

= EPX
[κ(K − F (T, x))+ | Mt]

⇒ G(t) = κX(t) (KΦ(−d2)− F (t, x)Φ(−d1))

where d1 =
log F (t, x)/K + 1

2
σ2

F

σF

d2 = d1 − σF

σ2
F =

∫ T

t

|γ(u, x)|2du
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and Φ(z) is a cumulative distribution function for the standard Normal distribution.

We have explained here how the swap market model can be adapted to mortality
modelling. However, it remains for an empirical study to determine whether the
assumption of a deterministic γ(u, x) is reasonable or not.

6.2.2 Stochastic interest rates

Now consider the case with stochastic interest. In this case we have

dP (t, s) = P (t, s)(r(t)dt + VP (t, s)′dZ̃(t))

dB(t, s, x) = B(t, s, x)VB(t, s, x)′dW̃ (t)

where Z̃(t) and W̃ (t) are independent Brownian motions. Application of the product
rule gives us

d(P (t, s)B(t, s, x)) = P (t, s)B(t, s, x)(r(t)dt + VP (t, s)dZ̃(t) + VB(t, s, x)dW̃ (t)).

Now consider the annuity contract described above with a guaranteed annuity rate
of K. The actual annuity rate at time T per £1 at T is F (T, x) where

F (t, x) =
P (t, T )B(t, T, x)∑∞

s=T+1 P (T, s)B(T, s, x)
.

(With t = T this equates to F (T, x) = 1/
∑

s P (T, s)pQ(T, s, x).) This suggests the
use of the numeraire

X(t) =
∞∑

s=T+1

P (T, s)B(T, s, x)

with

dX(t) = X(t)
[
r(t)dt + VPX(t)dZ̃(t) + VBX(t)dW̃ (t)

]
where VPX(t) = X(t)−1

∞∑
s=T+1

VP (t, s)P (t, s)B(t, s, x)

and VBX(t) = X(t)−1

∞∑
s=T+1

VB(t, s, x)P (t, s)B(t, s, x).

Under the measure PX , the prices of all tradeable assets discounted by X(t) are
martingales. Specifically this implies that F (t, x) is a PX-martingale with SDE
under PX

dF (t, x) = F (t, x)[γP (t, x)dZX(t) + γB(t, x)dWX(t)]

for suitable previsible processes γP (t, x) and γB(t, x). In the annuity market model
we assume that γP (t, x) and γB(t, x) are deterministic functions. As before we
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assume that the nominal amount to be converted into an annuity at T is S(T, x).
(The earlier argument converting actual numbers of lives surviving to T into S(T, x)
applies equally well here.) The value of the option component is denoted by G(t)
with

G(T ) =
S(T, x)(K − F (T, x))+

F (T, x)
.

The martingale property implies that

G(t)

X(t)
= EPX

[
G(T )

X(T )

∣∣∣∣ Ht

]

= EPX

[
S(T, x)(K − F (T, x))+

P (T, T )B(T, T, x)

∣∣∣∣ Ht

]
= EPX

[(K − F (T, x))+|Ht] .

With the assumption that the volatility functions γP (t, x) and γB(t, x) are deter-
minstic this gives us the pricing formula

G(t) = X(t) (KΦ(−d2)− F (t, x)Φ(−d1))

where d1 =
log F (t, x)/K + 1

2
σ2

F

σF

d2 = d1 − σF

and σ2
F =

∫ T

t

(|γP (u, x)|2 + |γB(u, x)|2)du.

It can be seen, therefore, that the annuity-market model offers a simple but pow-
erful tool which can allow us to tackle some important questions involving annuity
guarantees. Again, though, the underlying assumptions need to be tested against
historical data to see if the framework is a reasonable one or not.

6.3 The SCOR market model

We will now consider a market model which looks directly at annualised forward
mortality rates. This type of model is less tractable than the annuity market model
(Section 6.2) if we wish to use it to value annuity guarantees. On the other hand,
this type of model can be applied much more easily to a wider class of product.

As before we will start by considering the situation where interest rates are equal
to zero. We now define the concept of survival credits (see, also, Blake, Cairns and
Dowd, 2003). These are, in effect, bonuses payable to survivors within a pool of
life office policyholders in a way which ensures that no systematic profits or losses
accrue to the life office. The survival credit payable to survivors at t+1 is calculated
at time t by the life office based on the latest mortality tables available at time t.
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In the event, actual survivorship from t to t+1 may differ from that anticipated, so
the variation or risk over that year is borne by the life office.

The risk-neutral survival probability from t to t+1 measured at time t is pQ(t, t+1, x)
and this implies that the actuarially and financial-economically fair survival credit
payable at t + 1 is

1− pQ(t, t + 1, x)

pQ(t, t + 1, x)
.

This represents a fair subdivision (as far as it can be anticipated at time t) of the
amount invested at t by those who die before t + 1 amongst those who survive to
t + 1.17

This survivor credit is reminiscent of the τ -LIBOR (the London Interbank Offer
Rate with duration or tenor τ) in the money markets which is equal (in a world
with non-zero interest rates) to L = (1 − P (t, t + τ))/τP (t, t + τ). The τ -LIBOR
contract states that for each £1 deposited at t, £1 + τL will be returned at t + τ .
For this reason we will refer to

L(Tk−1, Tk−1, Tk, x) =
1− pQ(Tk−1, Tk, x)

(Tk − Tk−1)pQ(Tk−1, Tk, x)
(6.2)

as the Survivor Credit Offer Rate (or SCOR). In general we will assume that Tk −
Tk−1 = 1 for all k.18

Note also that we can rewrite (6.2) as

L(Tk−1, Tk−1, Tk, x) =
B(Tk−1, Tk−1, x)−B(Tk−1, Tk, x)

(Tk − Tk−1)B(Tk−1, Tk, x)
.

This allows us to define the forward SCOR as follows

L(t, Tk−1, Tk, x) =
B(t, Tk−1, x)−B(t, Tk, x)

(Tk − Tk−1)B(t, Tk, x)
. (6.3)

Under a forward SCOR contract arranged at t we are fixing in advance the survivor
credit that will be payable at Tk to survivors at Tk. That is for each £1 payable by
survivors at Tk−1, those still alive at Tk will receive £1 + (Tk−Tk−1)L(t, Tk−1, Tk, x)
at Tk. This will have zero value at t using the risk-neutral pricing approach discussed
in Section 2.

17This is rather like a pool of annuitants as considered by Blake, Cairns and Dowd (2003), but
here we are not making any assumptions about how much income is paid out of the fund to the
survivors. However, Blake, Cairns and Dowd do not consider in detail the possibility of stochastic
mortality.

18Note that, while pQ(Tk−1, Tk, x) must lie between 0 and 1, L(Tk−1, Tk−1, Tk, x) can lie between
0 and ∞. This means that we can model L(Tk−1, Tk−1, Tk, x), if we so choose, as a log-normal
random variable.
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For simplicity of notation in what follows, let us assume that Tk − Tk−1 = 1 for all
k and denote

Lk(t) ≡ L(t, Tk−1, Tk, x).

From equation (6.3) we see that Lk(t) is equal to the value of a tradeable asset
or portfolio (B(t, Tk−1, x) − B(t, Tk, x)) with the tradeable asset B(t, Tk, x) as the
numeraire. As noted at the start of this section on market models, this implies that
there exists a measure PTk

equivalent to Q under which the prices of all tradeable
assets divided by B(t, Tk, x) are martingales and under which W Tk(t) = W̃ (t) −∫ t

0
VB(u, Tk, x)du is a standard Brownian motion.

Application of the Product Rule to Lk(t) (following a similar argument in Cairns,
2004b, Section 9.1) gives us

dLk(t) =
B(t, Tk−1, x)

B(t, Tk, x)
(VB(t, Tk−1, x)− VB(t, Tk, x))′

{
dW̃ (t)− VB(t, Tk, x)dt

}
= Lk(t)VL(t)′dW Tk(t) (6.4)

where

W Tk(t) = W̃ (t)−
∫ t

0

VB(u, Tk, x)du

and VLk(t) ≡ VL(t, Tk−1, Tk, x)

= (VB(t, Tk−1, x)− VB(t, Tk, x))
(1 + Lk(t))

Lk(t)
. (6.5)

With reference to equation (6.4), first we note that the martingale property implies
that EPTk

[Lk(u)|Mt] = Lk(t) for t < u < Tk−1. Second, if we make the usual market
model assumption that VLk(t) is a deterministic function then Lk(u), given Mt for
t < u < Tk−1, is log-normal under PTk

with V arPTk
[log Lk(u)|Mt] =

∫ u

t
|VLk(s)|2ds.

Equation (6.5) can be rearranged to give

VB(t, Tk−1, x)− VB(t, Tk, x) =
Lk(t)

1 + Lk(t)
VLk(t). (6.6)

Bearing in mind the relationship between the W Tk(t) and W̃ (t), for l > k we can
use (6.6) to show that

dW Tl(t) = dW Tk(t) +
l∑

j=k+1

Lj(t)

1 + Lj(t)
VLj(t)dt.

Thus simulating under PT1 we have

dL1(t) = L1(t)VL1(t)dW T1(t)
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and for k > 1

dLk(t) = Lk(t)VLk(t)

(
dW T1(t) +

k∑
j=2

Lj(t)

1 + Lj(t)
VLj(t)dt

)
.

In addition we can simulate under the real world measure P by replacing dW T1(t)
by dW (t) + λ(t)dt for a suitable process λ(t).

Once again, this class of model offers us a powerful toolkit. Again, though, we need
to test potential models against historical data. Equally, there are challenges in
choosing a suitable market-price-of-risk process λ(t) which is statistically justifiable
and which leaves the model reasonably tractable.

7 Credit risk models

Finally, we consider the last class of models, the credit-risk models.

To start, we note that the zero-coupon survivor bond with price B̃(t, T, x) at time
t is similar to a zero-coupon corporate bond which pays 1 at T if there has been no
default and 0 if the bond has defaulted. There are many models which address the
problem of how to price such bonds (see, for example, the textbooks by Schönbucher,
2003, or Lando, 2004). In the present context, the most useful models for default
risk which could be translated into a stochastic mortality model are intensity-based
models (see, for example, Schönbucher, 2003, Chapter 7). In these models the
default intensity, λ(t) corresponds to the force of mortality µ(t, x + t). Thus from
the theoretical point of view pricing can be approached in the same way.

However, there are some differences between mortality risk and credit risk which
means that the types of model employed might be different:

• In a credit risk context different companies are equivalent to different cohorts
in the mortality model. However, there is no reason why, from the structural
point of view, that individual companies should be linked to each other in the
way that adjacent cohorts are.

• The default intensity is likely to be modelled as a mean-reverting process that
is also possibly time-homogeneous. In contrast, mortality models are certainly
time inhomogeneous and need to incorporate non-mean-reverting elements.
This has the important implication that Cox, Ingersoll and Ross (1985)-type
models can be used for credit-risk models, but not for mortality-based models.

• The default intensity is likely to be correlated with the interest-rate term
structure.
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We can conclude that credit-risk modelling does have something to offer us in the
mortality context. However, we need to proceed with caution instead of blindly
applying some credit-risk models that have unsuitable charateristics.

8 Conclusions

We have presented here a variety of theoretical frameworks that could be used for
pricing many different types of mortality derivatives. These frameworks can provide
other researchers with the basis for the development of specific models for stochastic
mortality.

We take as granted that many of the assumptions underpinning these frameworks
(such as liquid, frictionless markets) do not hold in practice. Nevertheless we can
still state that, in such imperfect markets, if prices evolve in the way suggested by
these pricing frameworks, then the model will be arbitrage free. We are not assuming
that the market must be complete, or that transactions costs must be zero or that
assets are infinitely divisible, and so on.

The challenges for future research are as follows. The first two challenges relate to
the models themselves:

1. We need to investigate a range of specific stochastic mortality models. Do
they give an adequate statistical description of the past? Do they satisfy
certain “reasonableness” criteria in terms of their potential future dynamics
and mortality curve shapes? Which models are straightforward to implement
numerically?

2. There is also the related issue of the number of risk factors. Is one risk-factor
adequate or do we need to have two or more factors so that we can have
imperfectly correlated mortality improvements at different ages? From the
discrete- and continuous-time models described in the introduction only that
of Renshaw and Haberman (2003) considers the possibility of a second factor.
One can easily argue that two or more factors might be desirable since different
medical advances, for example, are likely to have different impacts on different
parts of the mortality curve.

Then we have practical issues relating to the time lag:

3. How do we allow for the time lag between the measurement date and the date
when mortality rates for that date have been graduated and made public? Is
there something that can be learned here from catastrophe derivatives, where
information gradually emerges after a catastrophe event? One can certainly
argue that information about mortality rates at some time T0 will emerge
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between T0 and the publication date T1 of the official results through other ad
hoc sources.19

Finally, there are contract design issues:

4. What contract designs are likely to prove successful? Success can be measured
in different ways. In one sense this can be measured in terms of the amount
of risk transferred. In another sense it can be measured in terms of market
liquidity and volumes of business.

Both of these measures are related to basis risk. Some securities are issued
by individual insurers (using a Special Purpose Vehicle) and are designed to
minimise basis risk for the issuer (for example, the Swiss Re survivor bond).
Investors in the security are assumed to be buying the security as a means of
diversifying their portfolios and will, therefore, be less concerned about basis
risk. If the aim is a create a highly-liquid market then many investors will be
aiming to use the security to hedge their mortality risks. The contract will
need to make reference to some standard reference population. This reference
population will need to be close enough to those of the majority of individual
insurers to keep basis risk down. If basis risk is substantial for all but a small
minority of insurers then it is unlikely that a liquid market will develop.

Connected to this issue is the need to specify the contract in a way which
minimises the moral hazard associated with time lags in the release of infor-
mation (that is, the possibility of insider trading). This is a critical issue. For
a healthy and liquid investors need to feel that they have adequate protection
against insiders or that moral hazard is negligible. Some early attempts to in-
troduce catastrophe derivatives failed to excite the market precisely because of
this issue. We must learn from these past experiences to increase our chances
of getting the design mortality derivatives right first time round.

In summary, the challenges ahead of us are substantial. We need to develop good
stochastic models, we need reliable and timely mortality indices, and we need good
contract design. However, the time is more right than ever for the introduction of
mortality derivatives and this offers exciting times ahead for those of us who choose
to take up the challenge!
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Appendices

A The Lee and Carter model for stochastic mor-

tality

Lee and Carter (1992) investigate the dynamics of the observed central mortality
rates m(t, x) for integer t and x. Their model breaks m(t, x) down into a log-bilinear
model

log m(t, x) = a(x) + b(x)k(t)

with the translation and scaling constraints that
∑

x b(x) = 1 and
∑T1

t=T0
k(t) =

0. a(x) and b(x) are non-parametric functions without any smoothing applied or
functional form. k(t) is estimated directly from the data without any assumption
about its dynamic form

B The Lee and Yang model for stochastic mor-

tality

Lee (2000a) and Yang (2001) proposed the following model for stochastic mortality.

Suppose that a deterministic forecast of annual mortality rates is made at time 0.
Thus q̂(x, t) represents the probability (as estimated at time 0) that an individual
aged x at time t will die before time t + 1 for each integer x and t. The actual
mortality experience is modelled as

q(x, t) = q̂(x, t) exp

[
X(t)− 1

2
σ2

Y + σY ZY (t)

]

where X(t) = X(t− 1)− 1

2
σ2

X + σXZX(t)

and ZX(t) and ZY (t) are mutually independent sequences of i.i.d. standard normal
random variables.

It follows that the X(t) models the stochastic trend in the development of the
mortality curve while the −1

2
σ2

Y + σY ZY (t) models one-off environmental variations
in mortality (such as a major flu epidemic). From the limited data available Yang
found that σY was not significantly different from 0.



C THE MILEVSKY AND PROMISLOW MODEL FOR STOCHASTIC MORTALITY32

C The Milevsky and Promislow model for stochas-

tic mortality

Milevsky and Promislow (2001) model the force of mortality in the form µ(t, x) =
ξ0 exp(ξ1x+Yt) where Yt is an Ornstein-Uhlenbeck process with SDE dYt = −αYtdt+
σdWt. Essentially this translates into a Gompertz model with a time-varying scaling
factor.

D The Dahl model for stochastic mortality

Dahl (2003) models the process for µ(t, x + t) as follows

dµ(t, x + t) = αµ(t, x, µ(t, x + t))dt + σµ(t, x, µ(t, x + t))dW̃ (t).

He finds that if the drift and volatility are of the form

αµ(t, x, µ(t, x + t)) = δα(t, x)µ(t, x + t) + ζα(t, x)

and σµ(t, x, µ(t, x + t)) =
√

δσ(t, x)µ(t, x + t) + ζσ(t, x)

for some deterministic functions δα(t, x), δσ(t, x), ζα(t, x) and ζσ(t, x) then

pQ(t, T, x) = eA(t,T,x)−B(t,T,x)µ(t,x+t)

where the deterministic functions A(t, T, x) and B(t, T, x) are derived from differ-
ential equations involving δα(t, x), δσ(t, x), ζα(t, x) and ζσ(t, x).
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