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Abstract

In this paper we consider the evolution of the post-60 mortality curve in the UK
and its impact on the pricing of the risk associated with mortality improvements
over time: so-called longevity risk. We introduce a two-factor stochastic model for
the development of this curve through time. The first factor affects mortality-rate
dynamics at all ages in the same way, whereas the second factor affects mortality-rate
dynamics at higher ages much more than at lower ages.

The paper then examines the pricing of longevity bonds with different terms to
maturity referenced to different cohorts. We find that longevity risk over relatively-
short time horizons is very low, but at horizons in excess of 10 years it begins to
pick up very rapidly. We propose a method for risk-adjusting the market price of
a longevity bond which includes an allowance for parameter risk in the stochastic
mortality model. We utilise the pricing information contained in the November
2004 European Investment Bank longevity bond to make inferences about the likely
market prices of the risks in the model. Based on these, we investigate how future
issues might be priced to ensure an absence of arbitrage between bonds with different
characteristics.

Keywords

Longevity risk; Perks model; longevity bond; market price of longevity risk; market
price of parameter risk.

1 Introduction

Recently it has become clear that mortality is a stochastic process: longevity has
not only been improving, but it has been improving in an unpredictable way. These
(largely unanticipated) improvements have also been greatest at higher ages, and
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have caused life offices (and pension plan sponsors in the case where the plan provides
the pension) to incur losses on their life annuity business. The problem is that
pensioners are living much longer than was anticipated, say, 20 years ago. As a
result life offices are paying out for much longer than was anticipated, and their profit
margins are being eroded in the process. The insurance industry is therefore bearing
the costs of unexpectedly higher longevity. Looking forward, possible changes in
lifestyle, medical advances and new discoveries in genetics are likely to make future
improvements to life expectancy very unpredictable as well. This, in turn, will lead
to smaller books of life annuity business, smaller profit margins or both.

A recent capital market innovation, the longevity bond, provides life offices and
pension plans with an instrument to hedge the aggregate mortality risks that they
face. The idea for longevity bonds was first published in the Journal of Risk and
Insurance in 20011. Longevity bonds are annuity bonds whose coupons are not fixed
over time, but fall in line with a given survivor index2. For example, the survivor
index might be based on the population of 65-year-olds alive on the issue date of
the bond. Each year the coupon payments received by the life office or pension plan
decrease by the percentage of the population who have died that year. If, after the
first year, 1.5% of the population of what are now 66-year olds have died, then the
coupon payable at the end of that first year will fall to 98.5% of the nominal coupon
rate. But this is exactly what the life office or pension plan wants, since only 98.5%
of their own 66-year old annuitants (assuming these are representative of reference
population) will be alive after one year too, so they do not have to pay out so much.

The issue by the European Investment Bank (EIB) of the world’s first longevity
bond was announced in November 2004 by its structurer and manager BNP Paribas
(BNP). The bond had an initial market value of about £540m and a maturity of
25 years. Its coupon payments are linked to a survivor index based on the realised
mortality experience of a cohort of males from England & Wales aged 65 in 2003
as published by the UK Office for National Statistics (ONS). The longevity risk,
however, is not borne by the EIB. Instead, BNP arranged for the the longevity risk
to be reinsured with Bermuda-based PartnerRe. The intended main investors were
UK pension funds and life offices. For further details of the EIB/BNP longevity
bond see Appendix A.

In this paper we propose a stochastic mortality model that we fit to UK mortality
data and show how the calibrated model can be used to price longevity-dependent
financial instruments such as the EIB/BNP longevity bond. The model involves
two stochastic factors. The first affects mortality at all ages in an equal manner,
whereas the second has an effect on mortality that is proportional to age. We present
empirical evidence that indicates that both these factors are needed to achieve a sat-
isfactory empirical fit over the mortality term structure (that is, to model adequately
historical mortality improvements at different ages). The resulting model dynamics
allow us to simulate cohort survivor rates, thereby enabling us to model longevity
risk, and other mortality indices underlying alternative mortality-linked securities.

To price a mortality-linked security we adopt the risk-adjusted (or ‘risk-neutral’)

1Blake and Burrows (2001). See also Cox et al, 2000.
2For this reason they are also known as survivor bonds (e.g. Blake and Burrows, 2001).
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approach to pricing. Given the relative dearth of market information, we propose
a simple method for making the adjustment between real and risk-adjusted proba-
bilities. The magnitude of this adjustment is established by estimating the market
prices of longevity and parameter risk implied by the market price of the EIB/BNP
longevity bond.

The layout of this paper is as follows. Section 2 outlines the model. Section 3 fits
the model to English and Welsh mortality data, and discusses the plausibility of the
fit. Section 4 then presents some simulation results for the survivor rate based on
the calibrated model. Two alternative sets of simulation results are presented: first,
results that do not take account of parameter uncertainty, and, second, results that
do take account of such uncertainty. Section 5 discusses the price of longevity risk
– that is to say, it discusses the premium that a life office or pension plan might
be prepared to pay to lay off such risk – and uses this to show how the EIB/BNP
bond might be priced in a risk-adjusted framework. It also presents some illustrative
pricing results. Section 6 discusses the risk premium on new issues, and shows how
the earlier results might be used to price new longevity bonds with different terms
to maturity and following different cohorts. Section 7 concludes.

2 Model specification

In Cairns, Blake and Dowd (2004) we introduced notation for forward survival prob-
abilities

p(t, T0, T1, x) = probability as measured at t that

an individual aged x at time 0 and still alive at T0

survives until time T1 > T0.

Let I(u) represent the indicator process that is equal to 1 at time u if the life aged
x at time 0 is still alive at time u. Furthermore let Mu be the filtration generated
by the development of the mortality curve up to time u.3 Then

p(t, T0, T1, x) = Pr
(
I(T1) = 1|I(T0) = 1, Mt).

Note that p(t, T0, T1, x) = p(T1, T0, T1, x) for all t ≥ T1, since the observation period
(T0, T1] is then past and not subject to any further uncertainty.

For simplicity in this exposition we will define p̃(t, x) = p(t + 1, t, t + 1, x) to be the
realised survival probability for the cohort aged x at time 0. Additionally define the
realised mortality rate q̃(t, x) = 1− p̃(t, x).

In this paper we will restrict ourselves to the following model4 for the mortality
curve:

q̃(t, x) = 1− p(t + 1, t, t + 1, x) =
eA1(t+1)+A2(t+1)(x+t)

1 + eA1(t+1)+A2(t+1)(x+t)
. (1)

3That is, Mu represents the history of the mortality curve up to time u.
4This is a special case of what are known as Perks models: see, for example, Perks (1932) or

Benjamin and Pollard (1993).
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Figure 1: Ungraduated mortality rates above the age of 60 for England & Wales
males for the year 2002 (dots) and fitted curve eA1+A2y

/
(1+eA1+A2y) for A1 = −10.95

and A2 = 0.1058.

In this equation, A1(u) and A2(u) are stochastic processes that are assumed to be
measurable at time u. An example of a mortality curve is given in Figure 1. This
graph shows the ungraduated mortality rates above the age of 60 for England &
Wales males in 20025 along with the fitted curve (fitted using least squares applied
to (1)). The fit is clearly very good. Simpler parametric curves can also be fitted
(for example, qy = aA1+A2y) but the chosen curve gives a significantly better fit,
especially for higher ages.

3 Stochastic mortality

Estimated values for A1(t) and A2(t) for the years 1961 to 2002 are plotted in Figure
2.6 These results show a clear trend in both series. The downward trend in A1(t)
reflects general improvements in mortality over time at all ages. The increasing trend
in A2(t) means that the curve is getting slightly steeper over time: that is, mortality
improvements have been greater at lower ages. There were also changes in the trend
and in the volatility of both series. To make forecasts of the future distribution of
A(t) = (A1(t), A2(t))

′, we will model A(t) as a two-dimensional random walk with

5Available from the Government Actuary’s Department website, www.gad.gov.uk .
6For each t, A1 and A2 were estimated using least squares by transforming the ungraduated

mortality rates from qy to log qy/py = A1 + A2y + error.
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Figure 2: Estimated values of A1(t) (left) and A2(t) (right) in equation (1) from
1961 to 2002 for England and Wales males.

drift. Specifically

A(t + 1) = A(t) + µ + CZ(t + 1) (2)

where µ is a constant 2 × 1 vector, C is a constant 2 × 2 upper triangular matrix7

and Z(t) is a 2-dimensional standard normal random variable. If we use data from
1961 to 2002 (41 observations of the differences) we find that

µ̂ =

( −0.043 4
0.000 367

)
, and V̂ = ĈĈ ′ =

(
0.010 67 −0.000 161 7

−0.000 161 7 0.000 002 590

)
. (3)

If, on the other hand, we use data from 1982 to 2002 only (20 observations) then we
find that

µ̂ =

( −0.066 9
0.000 590

)
, and V̂ = ĈĈ ′ =

(
0.006 11 −0.000 093 9

−0.000 093 9 0.000 001 509

)
. (4)

These results show a steepening of trends after 1982, with µ1 and µ2 both becoming
larger in magnitude. They also show that the volatilities in the later period were
notably smaller than in the earlier period.

7There are infinitely many matrices C that satisfy V = CC ′, but the choice of C makes no
difference to our analysis. Provided the entries of C are all real valued, CC ′ is always positive
semidefinite. The restriction of C to an upper-triangular triangular form means that C is straight-
forward to derive from V and this (Cholesky) decomposition is unique.
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An important criterion for a good mortality model (see, Cairns et al., 2004, for a
discussion) requires the model and its parameter values to be biologically reasonable.
The negative value for µ1 indicates generally improving mortality, with this improve-
ment strengthening after 1982. The positive value for µ2 means that mortality rates
at higher ages are improving at a slower rate. Indeed, above the very high age of
113, the model predicts deteriorating mortality.8 This might be perceived to be an
undesirable feature of our model, but because this crossover point is at such a high
age it is not felt to be a serious problem here as the number of lives involved is very
low.

An additional criterion for biological reasonableness is that we should normally see,
in any given year in the future, mortality rates for older cohorts that are higher
than those for younger cohorts (that is, for fixed t, q̃(t, x) should be an increasing
function of x). This criterion requires A2(t) to remain positive. In our model A2(t)
could, theoretically, become negative, but the positive value for µ2 and the initial
value for A2 in 2002 of 0.1058 means that A2(t) is very unlikely to do so. So the
possibility of a negative A2(t) is of little practical significance.

4 Simulation results for the survivor index S(t)

A longevity bond of the type issued by the EIB/BNP indexes coupon payments in
line with a survivor index S(t) for a specified cohort of individuals.9

We now wish to determine the distribution for S(t) for the times t = 1, 2, . . . , 25 that
are relevant for the EIB/BNP longevity bond. Even though the functional form for
q̃(t, x) is relatively simple, its distribution for t > 2 is not analytically tractible, so
we resort to Monte Carlo simulation and obtain the simulated q̃(t, x) and S(t) from
simulations of the underlying process A(t).

4.1 Results with no allowance for parameter uncertainty

In our first experiment, we simulated the A(t) according to equation (2) using esti-
mates for µ and V based on data from 1961-2002 and 1982-2002. These parameter
estimates were treated as if they were the true parameter values, implying that, to
begin with, we ignore parameter uncertainty. The results are plotted in Figure 3.
We can make the following observations:

• The solid curves plot the expected values of S(t). Measured at time 0, these
represent the ex ante probabilities of survival from time 0 to time t, p(0, 0, t, 65)
(which we refer to as spot survival probabilities). The mean trajectory based
on data from 1982-2002 (bottom plot) is slightly higher than that in the upper
plot (based on 1961-2002 data). This is because steepening trends in A1(t)

8In other words the mortality rate at ages > 113 is rising over time rather than lower.
9In the case of the EIB/BNP bond the reference cohort is the set of all England and Wales

males aged 65 in 2003. The method used to calculate S(t) for this cohort is given in Appendix A.
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Figure 3: Mean and confidence intervals for projected survival probabilities based on
data from 1961-2002 (top) or 1982-2002 (bottom). Each plot shows the mean (solid
curve) and the 5th and 95th percentiles (dashed curves) of the simulated distribution
of the reference index, S(t), with no allowance for parameter uncertainty.
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and A2(t) in the 1982-2002 data (Figure 2) signal greater improvements in the
future.

• The dashed curves in each plot show the 5th and the 95th percentiles of the
distribution of S(t). We can observe that the resulting 90% confidence interval
is initially quite narrow but becomes quite wide by the 25-year time horizon
(which is the maturity of the EIB/BNP longevity bond). We can also see that
the confidence interval based on 1982-2002 data is a little narrower, reflecting
the smaller values on the diagonal of V .

• The confidence interval for S(t) grows in quite a different way from, say, that
associated with an investment in equities. This point is best illustrated by
looking at the variance of the logarithm of S(t), as illustrated in Figure 4.
We can see that this is very low in the early years indicating that we can
predict with reasonable certainty what mortality rates will be over the near
future. However, after time 10 the variance starts to grow very rapidly (almost
‘exponentially’). This contrasts with equities where we would expect to see
linear, rather than ‘exponential’, growth in the variance if the price process
follows geometric Brownian motion.

The explanation for this variance growth is that the longer-term survival prob-
abilities incorporate the compounding of year-by-year mortality shocks: the
survival probability for year t depends on shocks applied to mortality rates in
each of the years 1 to t, and each individual shock affects surivival probabilities
in all subsequent years.10

4.2 Results with parameter uncertainty

We consider next the impact of parameter uncertainty. It is clear that we have a
limited amount of data and so the parameter estimates above must inevitably be
subject to some degree of uncertainty. We will analyse this using standard Bayesian
methods.11

Recall that we have assumed that the process A(t) is subject to i.i.d. multivariate
normal shocks with mean µ and covariance matrix V . In the absence of any clear
prior beliefs about the values of µ and V we will use a non-informative prior distri-
bution. A common prior for the multivariate normal distribution in which both µ
and V are unknown is the Jeffreys prior

p(µ, V ) ∝ |V |−3/2

where |V | is the determinant of the matrix V . With this prior and with n observa-
tions D = {D(1), . . . , D(n)} (where D(t) = A(t)− A(t− 1)), it is known that (see,

10For further intuition, see Appendix C.
11For a general discussion of model and parameter risk, see Cairns, 2000.
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Figure 4: Plot of the variance of log S(t) using data from 1961-2002 (solid curve)
and from 1982-2002 (dashed curve), with no allowance for parameter uncertainty.
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for example, Gelman et al., 1995) the posterior distribution12 for µ, V |D is:

V −1|D ∼ Wishart(n− 1, n−1V̂ −1) (5)

µ|V,D ∼ MV N(µ̂, n−1V ) (6)

where µ̂ =
1

n

n∑
t=1

D(t)

and V̂ =
1

n

n∑
t=1

(D(t)− µ̂)(D(t)− µ̂)′.

In what follows, we will restrict ourselves to an analysis based on data from 1982 to
2002.

For each simulated sample path of A(t) we simulate first µ and V from the Normal-
inverse-Wishart distribution and use these values for the whole of that sample path.
The results of these simulations can be seen in Figures 5 and 6. In Figure 5 we can
see the impact of parameter uncertainty on the confidence interval: specifically that
parameter uncertainty becomes much more significant as a source of uncertainty in
S(t) as t increases. We can see that 25 years ahead parameter uncertainty accounts
for about half of the uncertainty in S(t)13. In Figure 6 we plot the variance of
log S(t), and the use here of a log scale allows us to see clearly that for smaller
values of t parameter uncertainty is much less important (that is the difference
between the two curves is quite small).

5 The price of longevity risk

Now consider the price that a life office or pension fund might be prepared to pay
to lay off its exposure to longevity risk. From Figures 3 to 6 we can infer that if
premiums are to be paid in respect of each future year, the premium will be much
larger for the 25-year payment than, say, the 10-year payment. Furthermore, a
reasonable proportion of this premium might be in respect of the desire to eliminate
exposure to parameter uncertainty.

5.1 Pricing using risk-adjusted probability measures

We propose to specify the dynamics under a risk-adjusted pricing measure Q that is
equivalent to, in the probabilistic sense, the current real-world measure (which we
shall refer to as P ).14 The measure Q is also commonly referred to as the risk-neutral

12The Wishart distribution is a multivariate version of the Gamma or Chi-squared distribution.
For details on how to simulate the joint Normal-Inverse-Wishart distribution see Appendix B.

13That is, at t = 25 the size of the gap on the log scale between the solid and dashed lines
equates to a ratio of about 2 between the variances.

14An alternative way of generating risk-adjusted measures is to use the Wang transform (Wang,
2000, 2002, 2003). These distort the distributions of each of the S(t) random variables. Examples
of its application to longevity bonds and other mortality-linked securities include Lin and Cox
(2004), Denuit, Devolder and Goderniaux (2004), Cox and Wang (2005), and Dowd et al. (2005).



5 THE PRICE OF LONGEVITY RISK 11

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Data from 1982−2002

Time, t

S
(t

)

E[S(t)] with parameter uncertainty
E[S(t)] without parameter uncertainty
5/95−percentile without parameter uncertainty
5/95−percentile with parameter uncertainty
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mean trajectories (thin and thick solid curves) for the two cases are overlapping.
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Figure 6: Plot of the variance (on a log scale) of log S(t) using data from 1982-2002.
The variance has been calculated excluding parameter uncertainty (dashed curves)
and including parameter uncertainty (solid curves).
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measure15 or as an equivalent-martingale measure.

Recall that we worked earlier with the following dynamics under P :

A(t + 1) = A(t) + µ + CZ(t + 1)

where Z(t + 1) is a standard 2-dimensional normal random variable under P .

Under the risk-adjusted measure Q(λ) we propose16 that:

A(t + 1) = A(t) + µ + C(Z̃(t + 1)− λ)

= A(t) + µ̃ + CZ̃(t + 1)

where µ̃ = µ− Cλ.

In this equation Z̃(t+1) is a standard 2-dimensional normal random variable17 under
Q. The vector λ = (λ1, λ2) represents the market prices of longevity risk associated
with the processes Z1(t) and Z2(t) respectively. Under the chosen decomposition
for the matrix C (upper triangular), λ1 is associated with level shifts in mortality
(specifically log q/p), while λ2 is associated with a tilt in log q/p. We assume (as part
of our model) that λ is constant rather than time dependent: indeed it is difficult to
propose anything more sophisticated for λ in the absence of any market price data.

We can make the following points about Q(λ):

• Complete market models such as the Black-Scholes option-pricing model force
upon us a unique choice of measure Q. In contrast, here we have an incomplete
market, and a range of possibilities for Q(λ).

• If there exists some form of market in mortality-linked securities then the
choice of Q(λ) needs to be consistent with this (limited) market information
(so that theoretical prices under Q(λ) match observed market prices).

• Beyond these restrictions, the choice of Q(λ) becomes a modelling assumption.
Thus, here we have postulated that the market price of risk, λ, might be
constant over time (in the same way that the market price of risk is normally
assumed to be constant in the Black-Scholes model).18

15In an incomplete market, the term risk-neutral is vague, but is used to convey the point that
expected returns over the short term under Q are equal to the short-term risk-free rate of interest.
At the present time we are very far from having a complete market in which all contingent claims
can be replicated using dynamic hedging strategies. This means that the risk-adjusted measure
Q is not unique. Rather the choice of which measure Q to use becomes one of the modelling
assumptions.

16Modelling in discrete time means that there are infinitely-many equivalent measures with
different means, variances and covariances for Z(t + 1). However, we choose to restrict ourselves
to ones that have a constant market price of risk, that preserve the variance-covariance structure
of Z(t + 1), and that preserve the assumption of bivariate normality. The latter assumptions lead
to consistency between the discrete-time model and the continuous-time diffusion model.

17That is, Z̃(t + 1) = (Z̃1(t + 1), Z̃2(t + 1))′ where Z̃1(1), Z̃1(2), . . . and Z̃2(1), Z̃2(2), . . . are
independent sequences of i.i.d. N(0, 1) random variables under Q(λ).

18In the case of both the present model and the Black-Scholes model, it would seem appropriate
that the market price be allowed to vary in a stochastic fashion over the long term, 25 years,
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5.2 Example: the EIB/BNP longevity bond

As an example, consider the 25-year longevity bond announced by the European
Investment Bank (EIB) in November 2004 with an issue price based on a yield of
35 basis points below LIBOR. The appropriate starting point is the EIB curve for
conventional fixed-interest bonds issued typically at 15 basis points below LIBOR.
This means that the new longevity bond was priced at 20 basis points below standard
EIB rates. This spread below standard EIB rates will be denoted by δ in the
equations that follow. We will now make the following assumptions:

1. The projected survival rates used in the pricing of the bond (in the case of
the EIB bond this is the projection made by the UK Government Actuary’s
Department) are unbiased estimates at time 0 under the real-world measure
P of the survival rates.

2. The spread of 20 basis points below the standard EIB curve is accounted for
entirely by the market price of longevity risk.

3. The development of mortality rates over time is independent of the dynamics
of the interest-rate term structure over time.19

We will refer to Ŝ(0, T ) as the survivor index based upon the latest GAD projections
available at time 0.20 Assumption 1 implies that Ŝ(0, T ) = EP [S(T )|M0].

Next, let us refer to P (0, T ) as the price at time 0 of a fixed-interest zero-coupon
bond that pays 1 at time T issued by the EIB. The basis declared by the EIB and
BNP for the initial price of the bond was V (0) =

∑25
T=1 P (0, T )eδT Ŝ(0, T ), where δ

is the spread (expressed as a continuously compounding rate) below the EIB curve
used in pricing the bond.21 Given assumption 1 this is equivalent to22

V (0) =
25∑

T=1

P (0, T )eδT EP [S(T )|M0]. (7)

of the contract. However, in the equity-modelling literature there seems to be little consensus
on the dynamics of the market price of risk. If we combine this observation with the absence of
any historical market data on mortality-linked securities we conclude that it is inappropriate to
attempt to model the market-price of risk as a dynamic process.

19This is a very useful simplifying assumption which we believe to be a reasonable one for
relatively short horizons under normal conditions. However, we recognise that over the very long
run the term structure of interest rates will be influenced by the relative size of the capital stock
to that of the population and the latter might be influenced by mortality (as well as fertility)
dynamics. Also in the short run, we recognise that a catastrophe that affects the size of the
population (such as nuclear war) will also affect interest rates.

20Values for the Ŝ(0, T ) are specified in the offer document issued by BNP Paribas.
21We do not know what the pricing convention for the bond is after issue. However, it seems

plausible that it will also be of the form (for integer t) V (t) =
∑25

T=t+1 P (t, T )eδ(t)(T−t)Ŝ(0, T ):
that is, still with reference to the initial estimate Ŝ(0, T ), and with reference to an easily-observable
zero-coupon curve at time t.

22Strictly, the P (0, T ) in equation (7) should be LIBOR-implied discount factors, PL(0, T ), in
combination with δ = 0.0035 as stated in the contract, while the P (0, T ) in equation (8) should
be the EIB-implied discount factors, PE(0, T ). However, as stated at the beginning of Section 5.2,
the approximate relationship between the two is PE(0, T ) = PL(0, T )e0.0015T , which leads us to
the given form in equation (7) with δ = 0.0020.
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Values for EP [S(T )|M0] based upon parameters in (4) and without parameter un-
certainty are given in Table 1, column 1. For example, if we assume that implied
EIB zero-coupon prices are given by P (0, T ) = 1.04−T and if we set δ = 0.0020 and
λ = (0, 0)′ then we find that the price at issue of the bond on this contractual basis
(equation 7) is V (0) = 11.442.

The risk-adjusted approach to pricing assumes that (exploiting assumption 3 above)

Vλ(0) =
25∑

T=1

P (0, T )EQ(λ)[S(T )|M0]. (8)

A comparison of equations (7) and (8) shows that δ can be interpreted as an average
risk premium per annum. We shall see later (Section 6) that this risk premium will
depend upon the term of the bond and on the initial age of the cohort being tracked.

We can now ask the question: what values for the market prices of risk λ1 and λ2

satisfy Vλ(0) = V (0)? Put another way, under what circumstances does the risk-
adjusted price (equation 8) match the issue price quoted in the contract (equation
7)?

With no parameter uncertainty, and δ = 0 we found that we could obtain Vλ(0) =
11.438 with (λ1, λ2) = (0.375, 0) and (0, 0.316). For these two values for λ the values
for EQ(λ)[S(t)|M0] are given in Table 1 columns 3 and 4. In column 5, we have also
given an intermediate value for λ between these two extremes.23 Here we can achieve
Vλ(0) = V (0) with λ1 = λ2 = 0.175. 24 25

We next introduce parameter uncertainty into the analysis. We first simulate under
P with full parameter uncertainty and the values for EQ(λ)[S(t)|M0] are given in
Table 1, in column 2 with λ = (0, 0, 0, 0)′. We have seen in Figure 6 that parameter
uncertainty presents a significant risk to annuity providers. It follows that they will
be prepared to pay a premium to reduce this risk in the same way that they are
prepared to pay to reduce the impact of longevity risk.

In this analysis we concentrate on introducing a market price of risk for the mean
µ. In the case of no parameter uncertainty we assume that µ = µ̂. With parameter
uncertainty, the basic model (see Appendix B) simulates first V , then calculates the
upper-triangular matrix C that satisfies V = CC ′, and then simulates

µ = µ̂ + n−1/2CZµ

where Zµ is a standard bivariate normal random variable. Once again we have to
identify possible equivalent measures. We propose here a similar restriction that,

23This can be found by fixing first the value for λ1 and then solving for λ2.
24In fact, the set of values for (λ1, λ2) that gives a price of 11.438 is approximately linear running

from (0.375, 0) to (0, 0.316). A straight line between the two end points would pass through
(0.171, 0.171) rather than (0.175, 0.175).

25It is tempting to think that (λ1, λ2) = (0.375, 0) and (0, 0.316) represent the extreme values for
the market price of longevity risk. This would be true for (λ1, λ2) = (0, 0.316) if the demand for
such assets is coming from annuity providers. However, if the market is dominated by life offices
hedging longevity or mortality risk in their term-assurance portfolios then λ1 might, in fact, be
negative. Similarly, λ2 might be negative if longevity risk at ages below 60 present the greatest
risk to annuity providers.
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Column
reference: 1 2 3 4 5 6 7
Parameter
uncertainty: N Y N N N Y Y
λ1 0 0 0.375 0 0.175 0 0
λ2 0 0 0 0.316 0.175 0 0
λ3 – 0 – – – 1.684 0
λ4 – 0 – – – 0 1.419

t EQ(λ)[S(t)|M0]
1 0.9836 0.9836 0.9837 0.9836 0.9836 0.9837 0.9836
2 0.9661 0.9661 0.9664 0.9662 0.9663 0.9664 0.9662
3 0.9475 0.9475 0.9482 0.9477 0.9479 0.9482 0.9477
4 0.9278 0.9278 0.9289 0.9281 0.9285 0.9289 0.9281
5 0.9068 0.9068 0.9086 0.9074 0.908 0.9086 0.9074
6 0.8845 0.8845 0.8872 0.8856 0.8863 0.8872 0.8856
7 0.861 0.8609 0.8646 0.8626 0.8635 0.8646 0.8626
8 0.836 0.8359 0.8408 0.8384 0.8395 0.8407 0.8383
9 0.8095 0.8095 0.8157 0.8129 0.8142 0.8156 0.8129
10 0.7816 0.7815 0.7893 0.7862 0.7877 0.7892 0.7861
11 0.7522 0.752 0.7616 0.7583 0.7599 0.7615 0.7582
12 0.7213 0.721 0.7326 0.7292 0.7308 0.7325 0.729
13 0.6888 0.6885 0.7023 0.6989 0.7004 0.7021 0.6987
14 0.6548 0.6545 0.6707 0.6675 0.6689 0.6704 0.6672
15 0.6195 0.6191 0.6378 0.635 0.6362 0.6374 0.6346
16 0.5828 0.5823 0.6036 0.6015 0.6024 0.6032 0.6011
17 0.5448 0.5443 0.5684 0.5672 0.5676 0.5679 0.5667
18 0.5059 0.5052 0.5321 0.5321 0.532 0.5315 0.5316
19 0.4661 0.4654 0.495 0.4965 0.4957 0.4944 0.4959
20 0.4258 0.4251 0.4573 0.4606 0.459 0.4566 0.4599
21 0.3853 0.3847 0.4191 0.4245 0.422 0.4185 0.4238
22 0.345 0.3445 0.3809 0.3885 0.3851 0.3803 0.3879
23 0.3054 0.305 0.3428 0.353 0.3486 0.3424 0.3524
24 0.2667 0.2668 0.3054 0.318 0.3128 0.3052 0.3177
25 0.2297 0.2302 0.2689 0.2841 0.278 0.269 0.284
Price
δ = 0 11.240 11.237 11.442 11.442 11.442 11.439 11.439
δ = 0.0020 11.442 11.439 – – – –

Table 1: Longevity bond expected cashflows under the risk-neutral measure Q(λ):
EQ(λ)[S(t)|M0] and market prices under various assumptions for the market prices
of longevity and parameter risk.
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under the equivalent measure, Zµ is still bivariate normal with unit variances but
a shifted mean. Thus we now simulate µ with reference to two additional market
prices of risk λ3 and λ4:

µ = µ̂ + n−1/2C(Z̃µ − λµ) = µ̃ + n−1/2CZ̃µ

where λµ = (λ3, λ4)
′ and µ̃ = µ̂− n−1/2Cλµ.

We now have four market prices of risk to play with to match the single price
derived by discounting expected cashflows under P at EIB minus 20 basis points.
With parameter uncertainty included, the expected cashflows under P change very
slightly (see Table 1, column 2), as does the price of V (0) = 11.439. The values for
λ1 and λ2 required to match this price are essentially unchanged from the values
that were determined before (Table 1 columns 3 and 4) and are consequently not
repeated in the table. The required values for λ3 and λ4 were, respectively, 1.684 and
1.419, with the corresponding values for EQ(λ)[S(t)|M0] quoted in Table 1, columns
6 and 7.

For the various cases presented in Table 1 we have plotted in Figure 7 the expected
value under P or Q(λ) of S(t) for t = 1, . . . , 25. This plot helps us to analyse
the impact of using the different measures and, in particular, to see where most
of the additional value in the longevity bond resides. The expected values in the
upper plot show us two things. First, the inclusion of parameter uncertainty has
almost no effect on the expected values under P . Second, the expected values under
the different Q(λ) measures look similar, and all show up the largest differences
compared with the P measure near t = 25.

The lower plot in Figure 7 allows us to differentiate more easily between the different
Q(λ) measures. Here we have plotted the expected risk premium per annum on a
zero-coupon longevity bond that is held from time 0 through to maturity. This is
calculated by converting the ratio of two expected values into an additional rate of
return per annum as follows:

1

t
log

(
EQ(λ)[S(t)|M0]

EP [S(t)|M0]

)
.

From this lower plot we can see that the level of the risk premium depends to some
extent on the choice of Q(λ). However, we can note from both Figure 7 and Table 1
that cases 3 and 6 produce very similar results and that cases 4 and 7 also produce
very similar results.26 The reason for these similarities is not, in fact, difficult to
explain. Recall that we have

µ = µ̂− n−1/2Cλµ + n−1/2CZ̃µ

and A(t + 1) = A(t) + µ− Cλ + CZ̃(t + 1)

= A(t) + µ̂− n−1/2Cλµ − Cλ + n−1/2CZ̃µ + CZ̃(t + 1)

= A(t) + µ̂− C
(
n−1/2λµ + λ

)
+ n−1/2CZ̃µ + CZ̃(t + 1).

Thus, relative to simulation under P with parameter uncertainty, when we simulate
under Q(λ), λ1 will have the same effect as n−1/2λ3 and λ2 will have the same effect

26If we repeat cases 3 and 4 incorporating parameter uncertainty then the remaining small
differences between the cases 3 and 6 and between cases 4 and 7 essentially disappear.



5 THE PRICE OF LONGEVITY RISK 18

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0   λ = (0    0    0    0)
p = 1   λ = (0    0    0    0)
p = 0   λ = (0.375    0    0    0)
p = 0   λ = (0    0.316    0    0)
p = 1   λ = (0    0    1.684    0)
p = 1   λ = (0    0    0    1.419)

Maturity, t

E
[ S

(t
) 

]

0 5 10 15 20 25

0
20

40
60

80
10

0

Maturity, t

A
ve

ra
ge

 r
is

k 
pr

em
iu

m
 (

ba
si

s 
po

in
ts

)

Figure 7: Top: Expected value of S(t) under different probability measures. Values
for the market prices of risk in the six cases considered are given in the legend;
p = 0 means without parameter uncertainty and p = 1 means with parameter
uncertainty in both µ and V . Bottom: Average risk premium per annum is defined
as log{EQ(λ)[S(t)]/EP [S(t)]}/t on a zero-coupon longevity bond over the full term
to maturity. Different line types are defined in the top plot.



5 THE PRICE OF LONGEVITY RISK 19

as n−1/2λ4. We can check this by comparing the values of λ1 to λ4 in Table 1.
Projections have been made on the basis of n = 20 observations of A(t + 1)−A(t),
and we can see that the ratios of λ3 to λ1 and λ4 to λ2 are both close to

√
20 as

predicted.

Now return to the results presented in Table 1. Why are the required values of λ1 to
λ4 positive? And why does the average risk premium per annum plotted in Figure
7 differ in the way that it does for λ1 and λ2 (curves A and B)?

The first thing to do is to analyse the impact on the mortality curve of changes in
A1(t) and A2(t). Recall that we have

q̃(t, x)

p̃(t, x)
= eA1(t)+A2(t)(x+t)

Now if we replace A1(t) + A2(t)(x + t) by Ā1(t) + Ā2(t)(x + t− x0) where Ā1(t) =
A1(t) + A2(t)x0 and Ā2(t) = A2(t), then for a suitable choice of x0 (specifically,
x0 = V̂21/V̂22 ≈ 62.2) the processes Ā1(t) and Ā2(t) become independent random
walks with drift. Ā1(t) has Z1(t) as its driver with market price of risk λ1 and Ā2(t)
has Z2(t) as its driver with market price of risk λ2. Under this transformation we
have

Ā(t + 1) = Ā(t) + µ̄ + C̄Z(t)

where µ̄ =

( −0.0302
0.000590

)

and C̄ =

(
0.01645 0

0 0.001229

)
.

We can now see that, since C̄ is positive, a positive shock Z1(t) will produce a
level shift in q̃(t, x)/p̃(t, x) over all ages x: that is, an unanticipated deterioration in
longevity. A positive value of λ1, in contrast, causes Ā1(t) to be pushed downwards
over time thereby enhancing improvements in longevity. So λ1 > 0 is required to
produce a positive risk premium (that is, higher expected values of S(t) under Q(λ)).

We have to be slightly more careful when we analyse the impact of positive shocks
Z2(t). Specifically, for x + t above age x0 = 62.2, a positive value for Z2(t) will
increase q̃(t, x)/p̃(t, x) (particularly so at high ages). However, the same positive
value for Z2(t) will cause q̃(t, x)/p̃(t, x) to fall for values of x+ t less than 62.2. Now
in our analysis we are considering a cohort who are all aged 65 at time 0, so that S(T )
is constructed from the experienced mortality rates q̃(0, 65), q̃(1, 65), . . . , q̃(T−1, 65).
Since the minimum age is 65 a positive shock in Z2(t) will cause an increase in each
of q̃(t− 1, 65), q̃(t, 65), . . . , q̃(T − 1, 65), everything else being equal. Thus, we infer
that λ2 must also be positive to produce a positive risk premium.

This discussion also helps us to explain the difference between the curves corre-
sponding to (λ1, λ2) = (0.375, 0) and (λ1, λ2) = (0, 0.316) in the lower half of Figure
7 (curves B and A respectively). Specifically risk adjustments to the dynamics of
A2(t) through the use of λ2 have proportionately a much greater effect on higher-age
mortality than adjustments to A1(t) through λ1. This means that the impact on the
survivorship probability to higher ages much more sensitive to λ2 than to λ1. Thus
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we see that curve A in Figure 7 corresponding to λ2 is flatter than curve B initially
but then picks up at a much faster rate, ending up at a higher level.

6 The risk premium on new issues

The announcement in 2004 of the 25-year EIB longevity bond will, we hope, be
followed by other issues with different maturity dates and which will follow different
cohorts.

Recall that the 25-year bond following the age-65 cohort (we will refer to this as
the (T = 25, x = 65) bond), had a 20 basis-point risk premium per annum. The
question now is: what risk premiums are appropriate for bonds with different terms
to maturity or that follow older or younger cohorts? It is important to address this
question to be sure that possible future bonds are priced in a consistent fashion.

This question can be answered in a relatively straightforward fashion. The key is
that the market prices of risk λ1 and λ2 used in pricing the (T, x) bond must be the
same as those used in pricing the (25, 65) bond. Thus for each (T, x) we calculate
the price of the bond by determining expectations under Q(λ) and then discounting
at EIB rates as before. We then calculate the price of the bond using expectations
under P but then discounting at EIB rates minus the risk premium δ as in equation
(7). We then need to find the value of δ that equates the two prices under P and
Q(λ).27

Recall that the only longevity bond so far in existence does not allow us to determine
λ uniquely. Instead, for any given proposed bond (T, x), the risk premium δ(T, x, λ)
will depend on λ.

Risk premia on (T, x) bonds are given in Tables 2, 3 and 4.28 We can make the
following observations:

• In each table we see that older cohorts attract a higher risk premium. As we
take younger and younger cohorts, the mortality rates get closer to zero, so
even if we introduce a market price of risk, the probability of survival will still
be close to 1. In contrast at higher ages, the market price of longevity risk
will have a proportionally greater impact on the survival probability. These
differences between ages 60, 65 and 70 are illustrated by the V ar[log S(t)] plot
in Figure 8. We can see that the longevity risk for the age 60 cohort is much
lower than the age 65 and 70 cohorts. Consequently a lower risk premium is
appropriate.

27We have not made any allowance in these calculations for parameter risk. We have commented
earlier that the impact of this is minimal for the (25, 65) bond priced with a 20 basis-point risk
premium.

28We concentrate on 20, 25 and 30-year bonds, but, for completeness we have included infinite-
maturity longevity bonds (which Blake and Burrows, 2001, called Survivor Bonds). However, we
note the practical difficulties associated with such bonds in dealing with the small numbers of
survivors at very high ages as well as lack of reliability in mortality statistics at these ages.
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Initial age of cohort, x
60 65 70

Bond 20 8.9 14.7 23.1
Maturity 25 12.7 20.0 28.7
T 30 16.9 24.3 31.5

∞ 22.9 27.2 32.2

Table 2: Longevity bond risk premium in basis points per annum as a function of
term to maturity and initial age of cohort. Market price of longevity risk assumed
to be λ = (0.375, 0).

Initial age of cohort, x
60 65 70

Bond 20 4.8 12.4 26.1
Maturity 25 9.2 20.0 36.1
T 30 15.0 27.6 42.3

∞ 27.1 34.8 44.7

Table 3: Longevity bond risk premium in basis points per annum as a function of
term to maturity and initial age of cohort. Market price of longevity risk assumed
to be λ = (0, 0.316).

Initial age of cohort, x
60 65 70

Bond 20 6.8 13.4 25.1
Maturity 25 11.0 20.0 33.3
T 30 16.2 26.6 37.9

∞ 25.5 33.7 39.6

Table 4: Longevity bond risk premium in basis points per annum as a function of
term to maturity and initial age of cohort. Market price of longevity risk assumed
to be λ = (0.175, 0.175).
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Initial age of cohort, x
60 65 70

eP (x, T )
Maximum 20 16.95 15.15 12.74
Years 25 19.59 16.78 13.45
T 30 21.30 17.53 13.64

∞ 22.43 17.79 13.66
eQ(λ)(x, T )− eP (x, T )

Maximum 20 0.12 0.20 0.28
Years 25 0.28 0.40 0.47
T 30 0.54 0.65 0.60

∞ 1.22 1.02 0.66

Table 5: Effect of the change of measure from P to Q(λ) for λ = (0.175, 0.175) on

expected future, truncated lifetimes: e(x, T ) =
∫ T

0
E[S(t)]dt. Upper part of table

shows e(x, T ) under the real-world measure P and the lower part of the table shows
the increase in e(x, T ) when we change to the risk-neutral measure Q(λ).

• In each table we see that the longer the maturity of the bond, the greater the
risk premium. This reflects our earlier observations (for example, Figure 7,
bottom) that longer-dated cashflows have a higher risk premium per annum.

• In each table consider the diagonal running from cohort 60, term 30 up to
cohort 70, term 20. In each case the terminal age is 90. As we move up
the diagonal, there are two conflicting trends influencing the risk premium.
The shortening maturity serves to push the risk premium down,29 while the
increasing initial age serves to push up the risk premium up. However, we
can see from the Table that the latter trend dominates and the risk premium
increases as we move up the diagonal.

Compare, for example, one cohort currently aged 60 with another currently
aged 70 and consider the contracted cashflows at age 90. This cashflow is
clearly subject to greater uncertainty for the age-60 cohort. However, the
observation above indicates that the overall impact of this greater uncertainty
on the 30-year longevity bond is much reduced by the effect of discounting.

• The risk premium δ(T, x, λ) varies most with (T, x) when λ = (0, 0.315) (Table
3). The greater variation with T reflects the development of the risk premium
illustrated in Figure 7, bottom. The greater variation with x reflects the
fact that Z2(t) affects mortality rates in different ways at different ages. The
market price of risk λ2 has a positive effect on mortality at higher ages and a
negative effect at lower ages.

• From Table 4 with the intermediate λ = (0.175, 0.175) we see that the risk
premia lie between those given in Tables 2 and 3.

29See Table 5 for this trend.
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Figure 8: Plot of the variances of log S(t) for the age 60 (solid line), 65 (dashed) and
70 (dotted) cohorts, based on data from 1982-2002, with no allowance for parameter
uncertainty.

Table 5 shows the impact in the truncated expected future lifetime e(x, T ) when
we move from the real-world measure, P , to the risk-neutral measure Q(λ) when
λ = (0.175, 0.175).30 The trends in this table match those in Table 4 with the
exception of the trend along the diagonal from (x, T ) = (60, 30) to (70, 20) where
the trend is reversed. As we move upwards along the diagonal we have the same two
factors working in opposite directions as before: decreasing term and increasing age.
In Tables 2 to 4 the impact of discounting was sufficient to allow the increasing-age
effect to dominate. In Table 5 the absence of discounting means that the decreasing-
term effect is dominant.

30If τx is the random future lifetime of an individual aged x, then e(x, T ) = E[min{τx, T}] =∫ T

0
E[S(t)]dt.
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7 The impact of the EIB interest rate

We can also investigate the impact of a change in interest rates. Specifically, let us
take λ as given but change the EIB interest rate from 4% to 5% per annum. In this
case we find that the impact on the risk premium is relatively small. Specifically,
if λ = (0.375, 0) then δ(25, 65) = 19.1 basis points and if λ = (0, 0.315) results in
δ(25, 65) = 18.9 basis points. This reduction in the risk premium reflects the relative
lowering, in present-value terms, of the later, more-uncertain cashflows under the
bond.

8 Conclusions

In this paper we have used a simple two-factor model for the development of the
mortality curve over time that seems, nevertheless, to fit the data well. The model
allows us to simulate the distribution of a survivor index over various time horizons
under both the real-world probability measure and under a variety of possible risk-
adjusted measures. By taking expectations under the latter measure, this model
enables us to price the longevity risk inherent in longevity bonds, given the known
longevity risk premium (of 20 basis points) contained in the world’s first longevity
bond, namely the November 2004 EIB 25-year bond designed by BNP Paribas with
a reference cohort of 65-year old English and Welsh males. The chosen model is
well suited to pricing longevity bonds. For other types of contract that involve,
for example, derivative characteristics on future mortality rates (such as guaranteed
annuity options) models formulated within the forward-mortality-model (such as
the Smith-Olivier model described in Olivier and Jeffrey, 2004) or the mortality-
market-model (Cairns et al, 2004) frameworks are likely to prove more efficient to
implement.

We find that the premium increases with both term and the initial age of the refer-
ence cohort. In the latter case, this is caused by the greater volatility that is associ-
ated with the higher mortality rates of older people compared with younger people.
For example, in the worst-case scenario considered (where the entire longevity risk
premium is associated with the second (ie volatility) factor), the premium for a
30-year bond with a reference cohort aged 70 is 42.3 basis points.

Another key finding of the paper is that the reference cohort’s initial age is more
important for determining the premium than the bond’s maturity. To illustrate,
again in the context of the worst-case scenario, the premium for a 20-year bond
with a reference cohort aged 70 is 26.1 basis points, whereas the premium for a 30-
year bond with a reference cohort aged 60 is 15.0 basis points. This shows that the
greater uncertainty in death rates at higher ages dominates the greater discounting
of the more distant cash flows of longer maturing bonds.

These findings suggest that open-ended survivor bonds that continue to pay out so
long as members of the reference cohort are still alive would not have an excessively
high longevity risk premium. However, they might be unattractive in other respects,
such as the administrative inconvenience associated with paying very small coupons
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50 years or so after the bond was issued. So fixed-term longevity bonds might
well dominate for practical considerations. Our results also suggest that fixed-term
longevity bonds might also be favoured by investors wishing to avoid the dominating
effects of parameter risk over the basic longevity risk.

We propose in future research to investigate alternatives to the random walk model
with drift used here. Possibilities include models drawn from the ARIMA class of
time series models.31 By taking this approach we will be investigating the important
issue of model risk in addition to the parameter risk considered in this paper.

In this paper we have assumed that the fitted values of A(t) are known with certainty.
A further line of research is to relax this assumption and to use instead filtering
approaches or Markov Chain Monte Carlo (MCMC) methods to estimate jointly
the posterior distribution of the parameters and of the current values of A(t).
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Appendices

A The EIB/BNP longevity bond

The EIB/BNP Paribas longevity bond makes reference to a cohort (aged x at time
0) index that is calculated along the following lines. We start, for convenience,
by letting t = 0 correspond to the beginning of 2003 and set the reference index
S(0) = 1. Changes in the reference index, S(t), from one year to the next are
determined by national mortality rates which are made publicly available. Thus,
for t = 1, 2, . . ., S(t + 1) = S(t)(1− m̃(t, x)) where m̃(t, x) is the mortality rate for
individuals aged x + t in year t (that is, age 65 in 2003, age 66 in 2004, and so on)
published by the UK Office for National Statistics (ONS).

It is important to note, though, that the ONS calculates its mortality rates in a
different way from the UK Government Actuary’s Department (GAD) (for example,
as with those for 2002 plotted in Figure 1). The reference population (England and
Wales, males) is the same in both cases but the GAD publishes mortality rates
q̃(t, x), whereas the ONS publishes so-called central mortality rates32 m̃(t, x). An
approximate relationship between the two rates is given by

m̃(t, x) ≈ q̃(t, x)

1− 1
2
q̃(t, x)

.

B Simulation of the Normal-Inverse-Wishart dis-

tribution

Equation (5) requires simulation of V |D using its posterior distribution, the Wishart(n−
1, n−1V̂ −1) distribution. It is more instructive to show how to simulate from the
Wishart distribution than it is to write down its density function. Thus:

• Let S be the upper triangular matrix that satisfies SS ′ = n−1V̂ −1.

• Now simulate n − 1 i.i.d. vectors α1, . . . , αn−1 ∼ MV N(0, SS ′): that is, let
αi = SZi where Zi is a standard n-dimensional normal random variable (that
is, the individual elements of each Zi are independent normal random variables
with mean 0 and variance 1).

• Let X =
∑n−1

i=1 αiα
′
i.

• Then X has a Wishart(n− 1, n−1V̂ −1) distribution.

• Our final step is to invert X to get our simulated covariance matrix: that is,
V = X−1.

32In standard actuarial notation, the mortality rate qy represents the proportion of the population
aged y at the start of the year that die during the following 12 months. The central mortality rate
my takes the cohort aged y at the start of the year and divides the number of deaths during the
year by the average size of the cohort over the year.
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Note that E[X] = n−1
n

V̂ −1. Thus the distribution of the simulated matrices V =

X−1 will be centred close to V̂ itself.

The second step of simulating from the Normal-Inverse-Wishart posterior distribu-
tion is to take the simulated V from the steps above and then sample µ from a
multivariate normal distribution with mean µ̂ and covariance matrix n−1V . This
can be simulated in the usual way.

C Illustration of accumulated variance

Conside a random walk in which W (0) = 0 and, for each t, W (t+1) = W (t)+Z(t+1)
where Z(1), Z(2), . . . is a sequence of i.i.d. standard normal random variables.

The way in which V ar(log S(t)) builds up is similar to Y (T ) =
∑T

t=1 W (t). Since
W (t) = Z(1) + . . . + Z(t) we have

Y (T ) = TZ(1) + (T − 1)Z(2) + . . . + 2Z(T − 1) + Z(T ).

This has variance
∑T

t=1 t2 = 1
6
T (T + 1)(2T + 1). In contrast V ar W (T ) = T .

If we introduce a drift, λ, into the process (that is, the Z(t) are i.i.d. N(λ, 1))
(thereby having the same effect as a market price of risk) then

Y (T ) =
1

2
T (T + 1)λ + TZ(1) + (T − 1)Z(2) + . . . + 2Z(T − 1) + Z(T ).

This does not affect the variance if λ is known. However, if λ is unknown with mean
λ̂ and variance σ2, then

V ar Y (T ) =
1

6
T (T + 1)(2T + 1) +

1

4
T 2(T + 1)2σ2.

As a consequence, uncertainty in λ causes greater uncertainty in Y (T ) than does
the underlying volatility in W (T ) as T gets larger (that is, the 1

4
T 2(T + 1)2σ2 term

dominates as T gets large).
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