
 
 

DISCUSSION PAPER PI-0801 
 
Mortality Density Forecasts: An Analysis of Six 
Stochastic Mortality Models 
 
Andrew J.G. Cairns, David Blake, Kevin Dowd 
Guy D. Coughlan, David Epstein, and Marwa Khalaf-Allah 
 
April 2008 
 
ISSN 1367-580X  
 
The Pensions Institute  
Cass Business School  
City University  
106 Bunhill Row London  
EC1Y 8TZ  
UNITED KINGDOM  
 
http://www.pensions-institute.org/  
 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCLAIMER 
 
Additional information is available upon request. This report has been partially prepared by 
the Pension Advisory group, and not by any research department, of JPMorgan Chase & Co. 
and its subsidiaries ("JPMorgan"). Information herein is obtained from sources believed to be 
reliable but JPMorgan does not warrant its completeness or accuracy. Opinions and 
estimates constitute JPMorgan's judgment and are subject to change without notice. Past 
performance is not indicative of future results. This material is provided for informational 
purposes only and is not intended as a recommendation or an offer or solicitation for the 
purchase or sale of any security or financial instrument. 



Mortality Density Forecasts:

An Analysis of Six Stochastic Mortality Models

Andrew J.G. Cairnsab, David Blakec, Kevin Dowdd,
Guy D. Coughlane, David Epsteine, and Marwa Khalaf-Allahe

April 2008

Abstract

We investigate the uncertainty of forecasts of future mortality generated by a number
of previously proposed stochastic mortality models. We specify fully the stochastic
structure of the models to enable them to generate forecasts. Mortality fan charts
are then used to compare and contrast the models, with the conclusion that model
risk can be significant.

The models are also assessed individually with reference to three criteria that focus
on the plausibility of their forecasts: biological reasonableness of forecast mortal-
ity term structures; biological reasonableness of individual stochastic components of
the forecasting model (for example, the cohort effect); and reasonableness of forecast
levels of uncertainty relative to historical levels of uncertainty. In addition, we con-
sider a fourth assessment criterion dealing with the robustness of forecasts relative
to the sample period used to fit the model.

To illustrate the assessment methodology, we analyse a data set consisting of national
population data for England & Wales, for Males aged between 60 and 90 years
old. We note that this particular data set may favour those models designed for
application to older ages, such as variants of Cairns-Blake-Dowd, and emphasise
that a similar analysis should be conducted for the specific data set of interest to
the reader. We draw some conclusions based on the analysis and compare to the
application of the models for the same age group and gender for the United States
population. Finally, we note the broader application of the approach to model
selection for alternate data sets and populations.

Keywords: Stochastic mortality model, cohort effect, fan charts, model risk, fore-
casting, model selection criteria.
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1 Introduction

A range of different stochastic mortality models have emerged over the last fifteen
years: e.g., Lee and Carter (1992), Renshaw and Haberman (2006), Cairns, Blake
and Dowd (2006b, hereafter denoted CBD, and 2008), Cairns et al. (2007, sections
4.6-4.8), and Delwarde, Denuit and Eilers (2007). They share a common feature
in that they are all time series models with parameters that are estimated from
historical mortality rates. They also have some key differences. Some models build
in an assumption of smoothness in mortality rates between ages (e.g. Cairns et al,
2006, and Delwarde et al, 2007) in any given year, while others allow for roughness
(e.g. Lee-Carter). In contrast, Currie et al (2004) assume smoothness in both the
age and time dimensions through the use of P-splines. Some models have dynamics
that are driven by just one source of randomness (e.g. Lee-Carter), while others
have several sources (e.g. the model proposed by Cairns et al. 2007 – here labelled
M7 – has four). Some researchers extend earlier models to allow for more-recently-
recognised phenomena, such as cohort effects (e.g., Renshaw and Haberman (2006),
Cairns et al. (2007, sections 4.6-4.8)).

A number of studies have sought to draw out more formal comparisons between
various models. CMI (2005, 2006, 2007), for example, compared the Lee-Carter
and P-splines models. Cairns et al. (2007) focused on quantitative and qualitative
comparisons of the eight models listed in Table 1, based on their general character-
istics and ability to explain historical patterns of mortality. The criteria employed
included:

• quality of fit, as measured by the Bayes Information Criterion (BIC);

• ease of implementation;

• parsimony;

• transparency;

• incorporation of cohort effects;

• ability to produce a non-trivial correlation structure between ages;

• robustness of parameter estimates relative to the period of data employed.

They found that some models fared better under some criteria than others, but
that no single model could claim superiority under all the criteria considered. One
implication of this is that there remains a large number of potentially valid stochastic
mortality models, despite significant conceptual differences between them. Another
implication is that model choice depends on what priority the model user attaches
to each of the assessment criteria.
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Model formula

M1 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x

M3 log m(t, x) = β
(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x

M4 log m(t, x) =
∑

i,j θijB
ay
ij (x, t)

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

M6 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x(xc − x)

Table 1: Formulae for the eight mortality models considered by Cairns et al. (2007):

The functions β
(i)
x , κ

(i)
t , and γ

(i)
t−x are age, period and cohort effects, respectively. The

Bay
ij (x, t) are B-spline basis functions and the θij are weights attached to each basis

function. x̄ is the mean age over the range of ages being used in the analysis. σ̂2
x is

the mean value of (x− x̄)2. na is the number of ages.

In this study, we describe a set of procedures that can be used to explore forensically
and diligently the appropriateness of the forecast models for a chosen data set.
We consider additional assessment criteria that allow us to examine the ex ante
plausibility of the forecasts generated by the stochastic mortality models, illustrating
with national population data for England & Wales, and separately, the United
States, for an age group consisting of 60-89 year old Males. Further work should
be undertaken to look at the related, but distinct, issue of the ex post forecasting
performance (i.e. backtesting) of stochastic mortality models (see Dowd et al.,
2008a,b).

We will concentrate on just six of the models discussed by Cairns et al. (2007):
these are labelled in Table 1 as M1, M2, M3, M5, M7 and M8. Models M2, M3, M7
and M8 include a cohort effect and these emerged in Cairns et al. (2007) as the best
fitting, in terms of BIC, of the eight models considered on the basis of male mortality
data from England & Wales and the US for the age group under consideration. M2
is the Renshaw and Haberman (2006) extension1 of the original Lee-Carter model

1We consider here, a version of the Renshaw and Haberman (2006) model, M2, discussed by



1 INTRODUCTION 4

(M1), M3 is a special case of M2, and M7 and M8 are extensions of the original
CBD model (M5). The original Lee-Carter and CBD models had no cohort effect,
and, although they fit the historical data less well, they provide useful benchmarks
for comparison with the four models involving cohort effects M2, M3, M7 and M8.
Models M4 and M6 are not considered any further in this study because of their
low BIC and qualitative rankings for these dataset in Cairns et al. (2007, Table 3).
Although M3 is a special case of M2, we include it here for two reasons. First, it had
a relatively high BIC ranking for the US data. Second, it avoids the problem with
the robustness of parameter estimates for M2 identified by Cairns et al. (2007).

There are three aspects to this study. First, we specify the stochastic structure of
the models to enable them to generate forecasts of mortality rates, determine central
projections and judge the uncertainty inherent in each model.

Second, we utilise the following assessment criteria to evaluate the plausibility and
robustness of the mortality forecasts produced by each model:

• biological reasonableness of the forecast mortality term structures;

• biological reasonableness of individual stochastic components of each model
(for example, the cohort effect);

• reasonableness of forecast levels of uncertainty relative to historical levels of
uncertainty;

• robustness of forecasts with respect to the time period used to fit the model.

Third, we discuss model risk as a complement to the discussion in Cairns, Blake
and Dowd (2006b) on parameter uncertainty. Our purpose is to determine whether
or not the choice of model has a material impact on forecasts of key variables of
interest, especially mortality rates.

The structure of the paper is as follows. In Section 2, we specify the stochastic
processes needed for forecasting the term structure of mortality rates for each of
models M1, M2, M3, M5, M7 and M8. Results for the different models using
England & Wales male mortality data are compared and contrasted in Section 3.
Section 4 examines two applications of the forecast models, namely applications to
survivor indices and annuity prices, and makes additional comments on model risk
and plausibility of the forecasts. Each model is then tested for the robustness of its
forecasts in Section 5 and this is augmented in Section 6 by a sensitivity analysis
of the forecasts to changes in key parameters in a fully specified stochastic model.

Cairns et al. (2007) which has problems with the stability of parameter estimates and projections
for this dataset. In this study, we do not examine alternative versions of this model and note that
other specifications of or extensions to this model might resolve the stability problem identified
herein.
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Finally, in Section 7 and in an Appendix we repeat the analysis for US male mortality
data: our aim here is to draw out features of the US data that are distinct from the
England & Wales data. In Section 8 we conclude.
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2 Forecasting with stochastic mortality models

In this section, we take six stochastic mortality models which, on the basis of fitting
to historical data, appear to be suitable candidates for forecasting future mortality
for the age group under consideration (that is, higher ages), and prepare them for
forecasting. To do this, we need to specify the stochastic processes that drive the
age, period and (if present) cohort effects in each model.

We define m(t, x) to be the death rate in year t at age x, and q(t, x) to be the
corresponding mortality rate, with the relationship between them given by q(t, x) =
1− exp[−m(t, x)]. All the models considered are of the form (see M1, M2, M3, M5,
M7 and M8 in Table 1):

log m(t, x) =
N∑

i=1

β(i)
x κ

(i)
t γ

(i)
t−x (models M1, M2 and M3),

or logit q(t, x) = log
q(t, x)

1− q(t, x)
=

N∑
i=1

β(i)
x κ

(i)
t γ

(i)
t−x (models M5, M7 and M8),

where β
(i)
x is an age effect, κ

(i)
t a period effect, and γ

(i)
t−x a cohort effect (see Cairns

et al., 2007).

Random-walk processes have been widely used to drive the dynamics of the period
effect ever since the introduction of the original Lee-Carter (1992) model. The
method used to estimate the model has been refined by subsequent authors in order
to improve the fit and place the model on more secure statistical foundations (see,
for example, Brouhns et al., 2002, Booth et al., 2002, Czado et al., 2005, and de
Jong and Tickle, 2006).

Following Cairns, Blake and Dowd (2006b), we use a multivariate random walk with
drift to drive the dynamics of the period effect. This model appears to be consistent
with the data (see the plots of the κ

(i)
t in Cairns et al. (2007)). However, more

general ARIMA models might provide a better fit statistically to some datasets.
For example, CMI (2007) uses an ARIMA(1,1,0) process for the period effect in the
Lee-Carter model (M1) and an ARIMA(2,1,0) process for the period effect in the
Renshaw and Haberman model (M2).

The principal challenge we face in building a stochastic mortality model that can
be used for forecasting lies in specifying the dynamic process driving the cohort
effect. In Figure 1 (right-hand column), we plot the fitted values of the cohort

effect for M2 (γ
(3)
t−x), M3 (γ

(3)
t−x), M8 (γ

(3)
t−x) and M7 (γ

(4)
t−x), where t− x is the cohort

year of birth (see Cairns et al., 2007).2 From these plots, we can see that a simple
random-walk process is unlikely to be appropriate and, in the sub-sections that

2The left-hand plots in the figure show the corresponding age effect for each model’s age-cohort
component.
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follow, we discuss various alternative stochastic processes that might be suitable for
the different models. As with previous studies (e.g., Renshaw and Haberman, 2006,

and CMI, 2007), we will assume that the cohort effect, γ
(i)
t−x, has dynamics that are

independent of the period effect, κ
(i)
t .

The age effects, β
(i)
x , are either non-parametric and estimated from historical data

(M1, M2 and M3), or assume some particular functional form (M5, M7 and M8).
Further, we focus on forecasts of mortality within the same range of ages used to
estimate the underlying models, so it is not necessary to simulate or extrapolate the
age effects.

2.1 Model M1

M1 is the original Lee-Carter (1992) model. It is a two-component model with a

single random process, κ
(2)
t , driving all the dynamics. In line with Lee and Carter

(1992), and for consistency with the remaining models, we assume that κ
(2)
t follows

a one-dimensional random walk with drift. There is no cohort effect.

2.2 Model M2

M2 is the Renshaw and Haberman (2006) extension to the Lee-Carter model in-

volving a cohort effect. We assume that κ
(2)
t follows a one-dimensional random walk

with drift. Determining the dynamics of the cohort effect (Figure 1, top right panel)

is rather more difficult. The observed path of γ
(3)
t−x in M2 has a pronounced hump

shape, a path that one would be highly unlikely to observe if it followed a random
walk with drift. Furthermore, the path seems relatively smooth around a trend that
is gradually changing over time with more pronounced changes in trend around 1900
and 1925. It is not clear how the trend might change in the future. The curve might
continue to steepen; on the other hand, it might easily become less steep. The latter
possibility is consistent with the results of CMI (2007) which used a wider range of
ages than Cairns et al. (2007) to fit the Renshaw and Haberman (2006) model.

2.2.1 Model M2A

To investigate further the dynamics of the cohort effect in M2, we examined a
range of ARIMA(p, d, q) processes for γ

(3)
t−x with d = 0, 1, 2, p = 0, 1, 2, 3, 4 and

q = 0, 1, 2, 3, 4. The full set of γ
(3)
t−x England & Wales male data run from 1881

through to 1940 with one missing observation in 1886.3

3The 1886 cohort was excluded from our analysis because it was felt that there were specific
problems with the exposure data for this cohort. For further discussion, see Cairns et al. (2007).
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Figure 1: England & Wales, males: Fitted age (beta) and cohort (gamma) effects
for models M2, M3, M7 and M8.
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Differencing Processes BIC
Optimal processes

d = 0 ARIMA(2,0,2) -28.8
d = 1 ARIMA(1,1,1) -26.9
d = 2 ARIMA(0,2,1) -24.8

Suboptimal processes
d = 0 ARIMA(1,0,0) -42.8
d = 1 ARIMA(1,1,0) -30.2
d = 2 ARIMA(1,2,0) -32.6

Table 2: Bayes Information Criterion (BIC) for various ARIMA processes for γ
(3)
t−x

in model M2. The optimal processes are those over the range p = 0, . . . , 4 and
q = 0, . . . , 4 for any given level of differencing.

For each level of differencing, d = 0, 1, 2, Table 2 shows the model with the highest
BIC.4 The table also shows the BIC values for selected suboptimal models.

One consequence of a second-order (d = 2) process is that large positive or negative

values in the second differences result in changes in the trend of γ
(3)
t−x. A glance at

the historical values for γ
(3)
t−x (Figure 1) shows potential changes in trend around

1900 and 1925.

On the basis of Table 2, we chose ARIMA(0,2,1) as the process driving the cohort
effect, and we denote this variant of the Renshaw-Haberman model as M2A. Thus
we have the process:5

∆2γ(3)
c = µ(3) + εc + αεc−1 (1)

where εc ∼ N(0, σ2). We have assumed that the mean level, µ(3) is zero.6 Using
data from 1881 to 1940, we estimate α̂ = −0.7453 and σ̂2 = 0.1191 (given µ(3)=0).

Forward simulation requires knowledge of the (latent) value of the residual εc for

4Here we calculate the BIC for the ARIMA(p, d, q) process as l̂− 0.5(p + q) log n where l̂ is the
maximum log-likelihood, and n is the number of observations. p and q are the variable numbers of
parameters: we have excluded other parameters such as the mean level and the standard deviation
which exist in all processes.

5∆ is the first difference operator, so that ∆γ
(3)
c = γ

(3)
c − γ

(3)
c−1 and ∆2γ

(3)
c = ∆

(
∆γ

(3)
c

)
=

γ
(3)
c − 2γ

(3)
c−1 + γ

(3)
c−2.

6The inclusion of a non-zero mean, µ(3), would add a deterministic, quadratic trend to γ
(3)
c ,

which could then be transformed into an age-period effect that is quadratic in both x and t.
Quadratic effects in t seem problematic from a biological point of view, since they imply that there
would be an age-period component to the model that accelerates with time. If the relevant age
effect (here β

(3)
x ) is very small then the combination of this with a quadratic period effect might

not cause visible problems in projections out 25 or 50 years, say. Otherwise, we might find that
the accelerating quadratic period effect dominates projections in a biologically unreasonable way.



2 FORECASTING WITH STOCHASTIC MORTALITY MODELS 10

the final cohort year of birth (here c = t− x = 1940) to which we have fitted γ
(3)
c .

2.2.2 Model M2B

As an alternative to an ARIMA(0,2,1) process, we considered an ARIMA(1,1,0)
process (as employed in CMI, 2007):

∆γ(3)
c = α∆γ

(3)
c−1 + σεc (2)

where the εc are i.i.d. ∼ N(0, 1). From Table 2, this process fits the historical
data less well. However, the difference in BIC values of 5.4 is relatively modest,
indicating that an ARIMA(1,1,0) is not an unreasonable choice and we denote this
variant of the Renshaw-Haberman model as M2B. The table assumes that the first
differences of γ

(3)
c revert to a zero mean. The fit can be improved further by allowing

for reversion to a non-zero mean, although this would then convert into a drift in
γ

(3)
c itself.

2.3 Model M3

M3 is a special case of M2 that assumes the age effects β
(2)
x and β

(3)
x are constant

and assumed to be equal to 1/(no. of ages) in this study, and we see from Figure

1 that the fitted cohort effect, γ
(3)
t−x, is relatively close to that for M2, so we might

expect to use similar stochastic models for the cohort effect.

A range of ARIMA processes were fitted to the γ
(3)
c observations from 1881 to

1940 with BIC values for the optimal models and selected others at each level of
differencing reported in Table 3. From this table, we see that we can repeat the
conclusions of model M2 and propose the use of the following models:

• M3A: γ
(3)
c is modelled as an ARIMA(0,2,1) process;

• M3B: γ
(3)
c is modelled as an ARIMA(1,1,0) process.

2.4 Model M5

M5 is the original two-factor CBD model. The factors κ
(1)
t and κ

(2)
t are modelled as

a 2-dimensional random walk with drift. There is no cohort effect.

2.5 Model M7

M7 is one extension of the CBD model (see Cairns et al., 2007) that allows for a

cohort effect. The three factors κ
(1)
t , κ

(2)
t and κ

(3)
t are modelled as a 3-dimensional
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Differencing Processes BIC
Optimal processes

d = 0 ARIMA(2,0,1) -30.6
d = 1 ARIMA(1,1,1) -28.2
d = 2 ARIMA(0,2,1) -27.1

Suboptimal processes
d = 0 ARIMA(1,0,0) -33.7
d = 1 ARIMA(1,1,0) -29.7
d = 2 ARIMA(1,2,0) -33.6

Table 3: Bayes Information Criterion (BIC) for various ARIMA processes for γ
(3)
t−x

in model M3. The optimal processes are those over the range p = 0, . . . , 4 and
q = 0, . . . , 4, for a given level of differencing.

Differencing Processes BIC
Optimal processes

d = 0 ARIMA(2,0,1) 172.4
d = 1 ARIMA(0,1,0) 169.5
d = 2 ARIMA(0,2,1) 163.0

Suboptimal models
d = 0 ARIMA(1,0,0) 170.8

Table 4: Bayes Information Criterion (BIC) for various ARIMA models for γ
(4)
t−x in

model M7. Optimal models are the optimal models over the range p = 0, . . . , 4 and
q = 0, . . . , 4, for a given level of differencing.

random walk with drift.

For England & Wales male data covering the period 1961 to 2004, estimates of
the cohort effect, γ

(4)
c (where c = t − x is the cohort year of birth), can be found

in Figure 1 (right middle panel) and in Cairns et al. (2007). We fitted a range
of ARIMA(p, d, q) processes and calculated the maximum BIC for three levels of
differencing d = 0, 1, 2.

From Table 4, we see that the ARIMA(2,0,1) model has the highest BIC with the
ARIMA(1,0,0) model (i.e. AR(1)) close behind. Although the BIC already penalises
the likelihood function for the number of parameters estimated, we nevertheless opt
for the AR(1) process.7 The simple form of the process driving the cohort effect

7The AR(1) process actually dominates when shorter runs of data than the full range cohort
years of birth 1881-1940 are considered.
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in M7 arises from the three identifiability constraints for M7 (Cairns et al, 2007).8

Application of these constraints means that the fitted γ
(4)
t−x has no discernible trend

or curvature.9 Instead, these features (trend and curvature) are transferred to the
period effects when the identifiability constraints are applied.

2.6 Model M8

M8 is another extension of the CBD model (see Cairns et al., 2007) allowing for a
cohort effect. Figure 1 (bottom right panel) shows an apparent downward trend in

the fitted values of γ
(3)
c , with significant fluctuations around this trend. It is worth

noting that, if we subtract the deterministic linear trend, then the detrended series
looks very similar to the γ

(4)
c series for M7.

We considered two possibilities for modelling the future dynamics of the cohort
effect: first, that γ

(3)
c has no linear trend and, second, that γ

(3)
c does have a linear

trend. For the first case, we fitted a range of ARIMA processes to the raw γ
(3)
c values.

Of these, the ARIMA(1,0,0) (i.e., AR(1)) process had the highest BIC (282.3). For

the second case, we used a linear regression to detrend the γ
(3)
c series before fitting

a range of ARIMA processes. The ARIMA(1,0,0) (AR(1)) process again came out
top, but with a slightly lower BIC value of 280.2 (due to the penalty from including
the additional drift parameter).

In our simulations, we consider two possible variations:

• Model M8A: γ
(3)
c is modelled as an AR(1) process with drift;

• Model M8B: γ
(3)
c is modelled as an AR(1) process with no drift.

In M8A, the deterministic drift can be converted into a mixture of age-period effects
(which results in adjustments to the κ

(1)
t and κ

(2)
t estimates) plus a quadratic age

effect that is constant in time.10 This implicit quadratic age-period effect mimics
the explicit quadratic age-period effect in model M7 with the restriction that the
implicit κ

(3)
t in M8 is constant.

8For further discussion of the relationship (for all models) between identifiability constraints
and the stochastic model for the period and cohort effects, see Appendix A.

9The estimated γ
(4)
c will have no discernible linear trend or quadratic curvature; it will simply

be a process that fluctuates around zero. This is because the three constraints used by Cairns et
al. (2007) mean that if a quadratic function α0 + α1c + α2c

2 is fitted to the estimated γ
(4)
c using

least squares, the estimates for α0, α1 and α2 will all be zero.
10 If the trend is θ[(t−x)−(t̄− x̄)] (where t̄ is the mean calendar year) then this trend multiplied

by β
(3)
x = (xc−x) can be separated out into three age-period effects ( θ(xc− x̄)(t− t̄), −θ(x− x̄)(t−

t̄− x̄ + xc), and θ(x− x̄)2) of which the first two can be incorporated into the existing age-period
effects, while the third is an age-effect that is quadratic in age but is not explicitly incorporated
into M8.
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2.7 Model risk

We end this section with some comments on model risk. Model risk arises in two
ways in the current context. On the one hand, it is the risk that we make a decision
based on one model that would be different if we had perfect information about the
true model and about its parameters (but still no information about future changes
in mortality). On the other hand, if we do not have this perfect information, model
risk still arises if there is a range of alternative models (all of which are acceptable
by our assessment criteria) that generate significantly different forecasts. The latter
happens with the models considered here: so a key conclusion from our analysis is
that model risk is a significant factor that needs to be considered carefully whenever
projections of mortality rates are required.

3 Forecasts and model comparisons

We now proceed to compare the forecasting results for England & Wales for the
nine models M1, M2A, M2B, M3A, M3B, M5, M7, M8A and M8B for our chosen
dataset. Corresponding results for US males are presented and discussed in Section
7 and Appendix B. To do this, we will present fan charts of the forecasts produced
by the models.11 This will allow us to explore any distinctive visual features of
each model, as well as any differences between the models. This, in turn, will give
us a first indication of the degree of model risk. These visual comparisons are
supplemented by a range of quantitative and qualitative diagnostics which will help
us to place a high weight on some models and to question the suitability of others
for our purposes.

Cairns et al. (2007) used a range of criteria to compare and assess models and these
focused on the within-sample fit of each model. In this section, we add three further
criteria that focus on the plausibility of their forecasts: biological reasonableness
of the projections of the future term-structure of mortality; biological reasonable-
ness of projected period and cohort effects; and reasonableness of forecast levels of
uncertainty relative to historical levels of uncertainty. These three criteria are, of
course, closely related, but it is useful to think about each separately. Although
‘plausibility’ is a rather subjective concept that is difficult to define, the forecasts
produced by some of the models turn out to be so obviously implausible that they
can be ruled out for use with this specific dataset. In Section 5, we consider a fourth
criterion, namely, the robustness of model forecasts in the face of changes to the his-
torical data sets used to calibrate the model; this continues a discussion, initiated
by Cairns et al. (2007) who considered the robustness of parameter estimates.

11Fan charts were first proposed for illustrating the output from stochastic mortality models by
Dowd, Blake and Cairns (2007).
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An examination of Figures 2 to 7 reveals the following:

• Figure 2 shows fan charts for the cohort effects for each model.12 Amongst
these, we can see that M2A’s and M3A’s fans have a distinctively different
shape from the other models, and expand without limit. The same is true for
M2B’s and M3B’s fans, although this is less obvious from the plots. These are
a result of the second- and first-order differencing in these models, respectively.
The fans for M2B and M3B seem plausible, whereas the fans for M2A and M3A
seem less so, because of the rapidity with which they spread out. However,
we would suggest that the latter are not so implausible as to rule out either
model at this stage.

The differences between the fan charts for M8A and M8B reflect differences
in the trend in γ

(3)
c (which the latter model sets to zero). Both models’ fans

converge to a finite width, a consequence of using a stationary AR(1) process
for the cohort effect. However, model M8A’s fan is slightly narrower, and this
reflects the fact that the lack of a constraint on the drift allows the estimation
procedure to achieve a tighter fit than M8B.

The different structure of each model inevitably means that each chart is
visually distinctive. This might be a sign that model risk is significant, but
this cannot be fully established until we focus on key output variables.

• In Figure 2, M2A, M3A and M8A all incorporate a linear trend. As remarked
earlier (Footnote 10), a linear trend can be converted into a mixture of age-
period effects. If these cannot be merged into existing age-period effects, this
might imply that the model is deficient in the following sense: the age-cohort
effect is being used to compensate for an inadequate number of age-period
components. It might not be sufficient, for example, to augment the Lee-
Carter model, M1, solely by the addition of an age-cohort component, as in
M2A. Rather, it might be more appropriate to extend the Lee-Carter model
by adding an age-period component as well as an age-cohort component, with
a further requirement that the cohort effect has no drift.13

• Figure 3 allows us to make an interesting comparison between model M1, on
one hand, and M5, M7, M8A and M8B, on the other. With M1, the age-85 fans
are narrower than the age-65 fans. The opposite is true for models M5, M7,
M8A and M8B. For these models, the predicted uncertainty is consistent with
the greater observed volatility in age-85 mortality rates between 1961 and 2004
than in age-65 mortality rates over the same period. The contrasting result
for M1 occurs because it has a single stochastic period effect, κ

(2)
t . The widths

of the fans14 is proportional to the age effect, β
(2)
x , and with M1 (see Cairns

12M1 and M5 are not plotted since they have no cohort effect.
13We do not consider such an extension in this paper.
14Under model M1, the standard deviation of log m(t, x) is β

(2)
x

√
V ar[κ(2)

t ].
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Figure 2: England & Wales, males: Fan charts for the projected cohort effect. For
M1 and M5, there is no cohort effect so no fan charts have been plotted. (See Dowd,
Blake and Cairns, 2007, for detailed description of how the fans are constructed.)
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Figure 3: England & Wales, males: Mortality rates, q(t, x), for models M1, M2A,
M2B, M3A, M3B, M5, M7, M8A and M8B for ages x = 65 (grey), 75 (red), and 85
(blue). The dots show historical mortality rates for 1961 to 2004.
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et al, 2007, Figure 7), β
(2)
x declines with age,15 forcing the fans at higher ages

to be narrower, rather than wider. However, we note that these fan charts do
not allow for parameter uncertainty, which would increase the width of the fan
charts at 85.

Fans for M2A, M2B and M3A similarly are wider at age 65 than age 85. We
note that for these models, the cohort effect may be significant. At age 65, the
cohort effect is simulated from the inception of the projections. However at
age 85, this is not the case. At older ages, projections initially use the fitted
values of the cohort effect (E.g., the first 20 years of projection at age 85) and
this has a consequent effect in reducing variability and the width of the fan
charts.

• Figure 3 shows fan charts for mortality rates at ages 65, 75 and 85 for each
of the nine models. In each case, except for M1 and M5, the central trend at
age 65 seems relatively smooth, while at age 85 it wobbles around until 2025.
This is because the central trend is linked to the estimated cohort effect, γ

(3)
c

(γ
(4)
c for M7). The cohort effect has been estimated for years of birth up to

1940. At age 85, the mortality rate is influenced by the estimated cohort
effect right up to 2025 when the 1940 cohort reaches age 85. After 2025, age-
85 mortality rates depend on smooth projections of the cohort effect. At age
65, the smoother projected cohort effect is evident almost immediately.

These plots make full use of the data from 1961 to 2004. If we extrapolate the
central section of each fan backwards in time, we see that it is approximately
aligned with the mortality rates at ages 65, 75 and 85 in 1961.

• Figure 4 allows us to make a more detailed comparison of the mortality fans
produced by the different models by overlaying the fans for six out of the nine
under consideration: M1, M2B, M3B, M5, M7 and M8B.

At age 65 (bottom graph), all but the M2B fans have roughly equal width. The
central trends, however, are noticeably different. For example, the difference
in trend between M5 (grey) and M7 (red) equates to a difference in the rate
of improvement in the age-65 mortality rate of 0.3% per annum.16

The differences in trend are even bigger at age 85 (M5 versus M7: 0.6% per
annum). But at age 85, we also see a noticeable difference between the spreads
of the M1, M3B, M5, M7 and M8B fans. M1 has the narrowest fan for reasons
already mentioned earlier. M5, M7 and M8B are closer in terms of the width
of the fans. M7, with three random period effects, has the widest fan, with the
high degree of uncertainty at age 85 resulting from a mixture of the variances

15 The reason why β
(2)
x declines with age is that mortality rates at higher ages have been

improving at a lower rate than at younger ages.
16Specifically, for age 65, the M5 improvement rate was 2.1% per annum, while for M7 the

improvement rate was 1.8% per annum.
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Figure 4: England & Wales, males: Mortality rates, q(t, x), for models M1 (green),
M2B (yellow), M3B (cyan) M5(grey), M7 (red), and M8A (blue) with fans overlaid
for ages x = 65, 75, and 85. The dots show historical mortality rates for 1961 to
2004.
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of and covariances between the κ
(i)
t and β

(i)
x terms. The fact that the central

trend for M7 lies above that for M5 at ages 65 and 85 is due to the quadratic
age effect β

(3)
x in M7.

• Figure 5 shows the relative impact on forecast mortality rates at ages 65,
75 and 85 from using models M2A and M2B. In all cases, the M2A fan is
wider, and more ‘trumpet’ shaped reflecting the greater uncertainty in the
ARIMA(0,2,1) model.

The differences between the two fans are largest at age 65. Everything else
being equal, the age-65 fan will be wider because the uncertainty in γ

(3)
c affects

mortality rates as soon as the 1940 cohort has passed through. So at age 65
differences between the fans emerge almost immediately, whereas at age 85
they only emerge after 2025.

Similar comments apply when we compare models M3A and M3B (Figure

6), although the impact is less severe at age 65 as the M3 age effect, β
(3)
x , is

constant.

For M2A and M2B, β
(3)
x is higher at low ages, and so we can see that the

uncertainty in the age 65 fans is relatively higher than the uncertainty in the
respective fans for M3A and M3B.

• Figure 7 shows the relative impact on mortality rates at ages 65, 75 and 85
from using models M8A and M8B. The differences between the two fans are
much smaller than those in Figure 5, even though the fans for γ

(3)
c are very

different for these two models (see Figure 2). The biggest difference is at age
65: the fans have a similar width, but the different trends equate to a difference
in mortality improvement rate of about 0.6% per annum. This difference in
trend is a direct consequence of the differences between the central trends of
γ

(3)
t−x in M8A and M8B. At age 65, we see that the trend with M8A (grey) is

lower than that with M8B (red). In contrast, at age 85, the trend with M8A

is higher. This is because β
(3)
x (Figure 1, bottom left) is positive at age 65 (so

lower values of γ
(3)
t mean lower mortality) and negative at age 85.

In terms of considering the suitability of the models for the dataset under consid-
eration, we can summarise as follows: The figures reveal reasonable consistency of
forecasts between M1, M3B, M5, M7 and M8B, but with sufficient differences for
model risk to be recognised as a significant issue. The figures also lead us to ques-
tion the plausibility of the forecasts produced by M1 and M2 for this dataset since
they imply that forecasts of mortality at age 85 are less uncertain than at age 65,
contrary to historical evidence. However, as noted earlier, in the case of M2, this
might be due to the fact that the variability of the cohort effect is not allowed for
till much later in the projections at age 85. Results for M1 are otherwise deemed
to be plausible. M5 has escaped much comment in this section, but this reflects the
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Figure 5: England & Wales, males: Fan charts comparing models M2A (grey fans)
and M2B (red fans). Top left: historical (dots) and forecast (fans) values for the

cohort effect, γ
(3)
c . Top right, bottom left and right: historical (dots) and forecast

(fans) mortality rates, q(t, x), for ages 65, 75 and 85.
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Figure 6: England & Wales, males: Fan charts comparing models M3A (grey fans)
and M3B (red fans). Top left: historical (dots) and forecast (fans) values for the

cohort effect, γ
(3)
c . Top right, bottom left and right: historical (dots) and forecast

(fans) mortality rates, q(t, x), for ages 65, 75 and 85.
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Figure 7: England & Wales, males: Fan charts comparing models M8A (grey fans)
and M8B (red fans). Top left: historical (dots) and forecast (fans) values for the

cohort effect, γ
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c . Top right, bottom left and right: historical (dots) and forecast

(fans) mortality rates, q(t, x), for ages 65, 75 and 85.
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fact that its forecasts have, so far, passed the plausibility test. M3, M7 and M8,
have attracted more comment, but the same conclusion can be made, namely that
they too have, so far, passed the plausibility test.

4 Applications: Survivor index and annuity price

In this section, we switch our attention from forecasts of the underlying mortality
rates, q(t, x), to two “derived” quantities that utilise these forecasts. The first of
these is a survivor index, and the second is the price of an annuity (which is, in turn,
derived from the survivor index). These provide additional illustrations of possible
model risk.

Figure 8 shows the fan charts produced by each model of the future value of the
survivor index S(t, 65); this measures the proportion from a group of males aged
65 at the start of 2005 who are still alive at the start of 2005+t. Note that the
cohort effect, γ

(3)
c , for model M2 for this group of males has already been estimated

from the historical data. Consequently, the choice of forecasting model for γ
(3)
c has

no impact on S(t, 65): as a consequence, models M2A and M2B produce identical
results. The same applies to M3 and M8. For younger cohorts (see, for example,
our second example for age 60 below), however, we would see a difference between
M2A and M2B, between M3A and M3B, and between M8A and M8B.

The fans for M1, M2B, M3B, M5, M7 and M8B are superimposed in Figure 9 to aid
comparison. This reveals some differences between the trends and more significant
differences between the dispersions. Again, therefore, model risk cannot be ignored:
with this particular application, it manifests itself in terms of different survivor index
trends.

The survivor index can be used to calculate the present value of a term annuity
payable annually in arrears for a maximum of 25 years to a male aged 65 at the
start of 2005. The price is equal to the present value of the survivor index, which,
assuming a constant interest rate, is given by:

P =
25∑

t=1

vtS(t, 65)

where v is the discount factor. If we assume a rate of interest of 4% per annum, then
the simulated empirical distribution function of P under each of the nine models is
plotted in Figure 10. We can see that there are some moderate differences between
the models. (see Table 5).

The calculations were repeated for the present value of a term annuity payable
annually in arrears for a maximum of 30 years to a male aged 60 at the start of
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Figure 8: England & Wales, males: Fan charts for the survivor index S(t, 65) for
the cohort aged 65 at the start of 2005, for models M1, M2A/M2B, M3A/M3B, M5,
M7, and M8A/M8B.
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Figure 9: England & Wales, males: Fan charts for the survivor index S(t, 65) for
the cohort aged 65 at the start of 2005, for models M1 (green), M2B (yellow), M3B
(cyan), M5(grey), M7(red) and M8B (blue).
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2005:

P =
30∑

t=1

vtS(t, 60).

In this case the cohort effect needs to be simulated for the underlying cohort and so
differences between M2A and M2B, M3A and M3B, and M8A and M8B emerge (see
Figure 11, and Table 6). The general conclusions from this additional experiment
are much the same as for the age 65 cohort. However, we can make the additional
observation that the choice of model for the cohort effect under models M2, M3 and
M8 has only a moderate impact on the value of an annuity at age 60.

Coefficient
Model Mean St. Dev. of variation
M1 11.393 0.201 1.76%
M2A/M2B 11.796 0.217 1.83%
M3A/M3B 11.673 0.210 1.80%
M5 11.415 0.255 2.23%
M7 11.264 0.279 2.48%
M8A/M8B 11.357 0.259 2.28%

Table 5: England & Wales, males: Mean, standard deviation and coefficient of
variation (the standard deviation divided by the mean) of the random present value
P =

∑25
t=1 vtS(t, 65).

Coefficient
Model Mean St. Dev. of variation
M1 13.428 0.222 1.65 %
M2A 13.804 0.260 1.89 %
M2B 13.612 0.340 2.50 %
M3A 13.648 0.257 1.88 %
M3B 13.582 0.257 1.89 %
M5 13.427 0.263 1.96 %
M7 13.201 0.304 2.30 %
M8A 13.393 0.272 2.03 %
M8B 13.312 0.276 2.07 %

Table 6: England & Wales, males: Mean, standard deviation and coefficient of
variation (the standard deviation divided by the mean) of the random present value
P =

∑30
t=1 vtS(t, 60).
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Figure 10: England & Wales, males: Random present value of an annuity payable
annually in arrears for a maximum of 25 years to a male aged 65 at the start of
2005, assuming a rate of interest of 4% per annum. The legend follows the order
from left to right at probability 0.2.
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Figure 11: England & Wales, males: Random present value of an annuity payable
annually in arrears for a maximum of 30 years to a male aged 60 at the start of
2005, assuming a rate of interest of 4% per annum. The legend follows the order
from left to right at probability 0.2.
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5 Robustness of projections

We now assess the projections from models M1, M2B, M3B, M5, M7, M8A and
M8B for robustness relative to the sample period used in constructing the simulation
model. For each model, we compare three sets of simulations in Figures 12 to 18:

• (Grey fans) (A) The underlying model is first fitted to mortality data from

1961 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to the full set of values resulting from (A) (44 κ
(i)
t ’s

and 60 γ
(i)
t−x’s).

• (Blue fans) (A) The underlying model is first fitted to mortality data from

1981 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to the full set of values resulting from (A) (24 κ
(i)
t ’s

and 45 γ
(i)
t−x’s).

• (Red fans) (A) The underlying model is first fitted to mortality data from

1961 to 2004. (B) The stochastic model for the κ
(i)
t period effects and the γ

(i)
t−x

cohort effects is then fitted to a restricted set of values resulting from (A) (the

final 24 κ
(i)
t ’s and the final 45 γ

(i)
t−x’s).

If the period and cohort effects were, in fact, observable then we would be using the
same 24 κ

(i)
t ’s and the same 45 γ

(i)
t−x’s to generate the red and the blue fans, implying

that the red and blue fans should be the same. The fact that the period and cohort
effects have to be estimated means that the red and blue fans will be affected by
estimation errors, but if a model is robust then we would expect the red and blue
fans to have similar median trajectories and similar spreads.

From the results in Figures 12 to 18, we can make the following remarks:

• In most cases, the central trajectory of the mortality fans is closely connected
to the start and end years used to fit the simulation model for the period
effects.17 For example, if the central projections in the grey fans are extrap-
olated backwards from 2004, then the extrapolation starts off below the dots
but then reconnects around about 1961. For the red and blue fans, this back-
wards extrapolation will be approximately aligned with the line connecting
the 1981 and 2004 observations.

Since the historical data display an apparent change in trend,18 it is inevitable
that, for all models, fans based on data from 1961 to 2004 will differ from
those based on data from 1981 to 2004.

17Recall that for a pure random walk process, the median forecast is a straight line extrapolation
of the line connecting the first and the last observations.

18These comments apply whether or not this change in trend is genuine, or just the result of
statistical variation.
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Figure 12: England & Wales, males: Model M1. Cohort effect (absent for this
model) and mortality rates for ages 65, 75 and 85. Dots and grey fans: historical

data from 1961 to 2004 used to estimate the historical κ
(2)
t ; forecasting model uses

the 44 κ
(2)
t values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical κ
(2)
t ; forecasting model uses the 24 most recent κ

(2)
t values.

Blue fans: historical data from 1981 to 2004 used to estimate the historical κ
(2)
t ;

forecasting model uses the full 24 κ
(2)
t values.
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Figure 13: England & Wales, males: Model M2B. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 44 κ

(2)
t values

and the 60 γ
(3)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent

κ
(2)
t values and the 45 most-recent γ

(3)
c values. Crosses and blue fans: historical

data from 1981 to 2004 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting

model uses the full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 14: England & Wales, males: Model M3B. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 44 κ

(2)
t values

and the 60 γ
(3)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent

κ
(2)
t values and the 45 most-recent γ

(3)
c values. Crosses and blue fans: historical

data from 1981 to 2004 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting

model uses the full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 15: England & Wales, males: Model M5. Cohort effect (absent for M5) and
mortality rates for ages 65, 75 and 85. Dots and grey fans: historical data from 1961
to 2004 used to estimate the historical κ

(i)
t ; forecasting model uses the 44 κ

(1)
t and

κ
(2)
t values. Dots and red fans: historical data from 1961 to 2004 used to estimate

the historical κ
(i)
t ; forecasting model uses the 24 most-recent κ

(1)
t and κ

(2)
t values.

Blue fans: historical data from 1981 to 2004 used to estimate the historical κ
(i)
t ;

forecasting model uses the full 24 κ
(1)
t and κ

(2)
t values.
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Figure 16: England & Wales, males: Model M7. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 44 κ

(i)
t values

and 60 γ
(4)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t

values and the 45 most-recent γ
(4)
c values. Crosses and blue fans: historical data

from 1981 to 2004 used to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model

uses the full 24 fitted κ
(i)
t values and the full 45 fitted γ

(4)
c values.
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Figure 17: England & Wales, males: Model M8A. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 44 κ

(i)
t values

and 60 γ
(3)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t

values and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data

from 1981 to 2004 used to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model

uses the full 24 fitted κ
(i)
t values and the full 45 fitted γ

(3)
c values.
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Figure 18: England & Wales, males: Model M8B. Cohort effect and mortality rates
for ages 65, 75 and 85. Dots and grey fans: historical data from 1961 to 2004 used
to estimate the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 44 κ

(i)
t values

and 60 γ
(3)
c values. Dots and red fans: historical data from 1961 to 2004 used to

estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t

values and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data

from 1981 to 2004 used to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model

uses the full 24 fitted κ
(i)
t values and the full 45 fitted γ

(3)
c values.
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• In most cases, the grey fans are wider, reflecting the greater volatility in mor-
tality rates that can be seen in the years 1961 to 1980, and which are not
directly relevant in the red and blue fans.19

• For M2B (Figure 13), there are similar differences between the red or blue
fans, on the one hand, and the grey fan, on the other. However, we can also
see very significant differences between the red and blue fans, most obviously
at age 85 where there is a clear problem with the blue fan. The explanation
for the implausible shape of the blue fan at age 85 lies partly with the fitted
values for β

(3)
x . Using data from 1961 to 2004, the fitted β

(3)
x is entirely positive

(see Figure 1, top left). When we use data from 1981 to 2004 (see Cairns et

al., 2007, Figure 14), the fitted β
(3)
x is very different, taking negative values

below age 77 and positive values above (and these are larger in magnitude as

well). Figure 14 in Cairns et al. (2007) also shows that γ
(3)
c is increasing more

steeply after year of birth 1925. When this is combined with the negative
values for β

(3)
x up to age 77, this implies improving cohort mortality. But

as the post-1925 steepening in γ
(3)
c feeds through to the higher ages during

the forecasting period 2004 to 2024, it combines with positive values for β
(3)
x

resulting in sharply deteriorating mortality (Figure 13, blue fans). In contrast,

when we use data from 1961 to 2004, since β
(3)
x is positive at all ages, the post-

1925 steepening in γ
(3)
c means that mortality rates continue to improve at high

ages within the forecasting period 2004-2024 (Figure 13, red fans). Thus, the
finding in Cairns et al. (2007), that changing from 1961-2004 data to 1981-
2004 data resulted in substantially different estimates for the age, period and
cohort effects has been shown to have a material impact on key outputs in
forecasts based on this model.

This lack of stability would appear to be linked to the shape of the likelihood
function for model M2 using this dataset. First, the fitting algorithm is gener-
ally slow to converge indicating that the likelihood surface is quite flat in some
dimensions. Second, we investigated (but do not report here in detail) how the
parameter estimates evolve when we add one calendar year’s data at a time.
Occasionally, we see that the parameter values jump to a set of values that
are qualitatively quite different from the previous year’s estimates: a sure sign
that the likelihood function has multiple maxima. It therefore seems likely
that the blue fan relates to one maximum and the red fan to another.

So we can conclude that for the dataset under consideration and for this imple-
mentation of M2 the forecasts are not robust relative to how much historical

19Greater volatility in the mortality data leads to greater volatility in the estimates of the
underlying period effects, κ

(i)
t . This, in turn, leads to higher estimates for the variances in the

random-walk model for the period effects. Finally this leads to greater uncertainty in future
mortality rates. The red and blue fans draw on estimates of the period effects that cover the
less-volatile years.
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data is used. Nonetheless, it is possible that other implementations of M2 are
less unstable.

• For M7 (Figure 16), the fans look stable. In particular, the red and blue fans
are very similar in terms of trajectory and spread. The greater spread of the
grey fans reflects a greater volatility in the κ

(i)
t prior to 1981. Cairns et al.

(2007, Figure 15) had indicated that M7 appeared to be stable relative to the
period of data employed. The results here reinforce this conclusion.

We can see that the grey mortality fans also have a different mean trajectory
from the red and blue fans. However, we consider this to be ‘normal’ variation
given the changing trends in the data.

• For M1, M3B, M5, M8A and M8B, we can come to similar conclusions as M7
for the England & Wales males 1961-2004 and 1981-2004 datasets.

In summary, for the dataset it appears that M1, M3, M5, M7 and M8 are all
reasonably robust relative to the historical data used. M2B forecasts, in contrast,
look to be unstable.

6 Sensitivity analysis

It is also important to perform a sensitivity analysis. Here we illustrate with M7,
and discuss how sensitive outputs are to changes in key parameters of the models
driving κ

(1)
t , κ

(2)
t , κ

(3)
t and γ

(4)
t .

Why is such a sensitivity analysis important? An individual modeller might have
their own subjective opinion about specific model parameters. A sensitivity analysis
sheds light on what the impact of this might be. Alternatively, if the subjective
opinion concerns mortality improvement rates at specific ages, then a sensitivity
analysis will help the modeller to choose the right drift parameters for the period
effects.

In Figure 19, we plot pairs of fans that show how projected mortality rates change if
we vary key parameters in the forecasting model. In each case, one parameter is var-
ied while others remain fixed and equal to their unconditional maximum likelihood
estimates.

From these plots, we can see that the drifts in the random-walk model for the κ
(i)
t

have a critical impact on mortality rate dynamics:

• A decrease of 0.01 in the drift of κ
(1)
t (top left) means that the q(t, x) improve-

ment rate changes by about 1% at all ages.
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• A decrease of 0.001 in the drift of κ
(2)
t (top right) converts into different changes

in the q(t, x) improvement rates at different ages. At age x = 74.5, there is no
impact. At age 64.5, there is a 10× 0.001 = 0.01 decrease in the improvement
rate (that is, β

(2)
x times the amount of the change in the drift). At age 84.5,

there is a 10× 0.001 = 0.01 increase in the improvement rate. In other words,
the impact on the improvements is linear in age.

• A decrease of 0.0001 in the drift of κ
(3)
t (centre left) converts into different

changes in the q(t, x) improvement rates at different ages. At age x = 74.5,
there is little impact. At age 64.5, there is a 0.01 increase in the improvement
rate. At age 84.5, there is also a 0.01 increase in the improvement rate. In
other words, the impact on the improvements is quadratic in age.

• The AR(1) model for γ
(4)
c is

γ
(4)
c+1 = µγ + αγ(γ

(4)
c − µγ) + σγε

(4)
c+1

where the ε
(4)
c are i.i.d. standard normal innovations that are assumed to be

independent of the random-walk model for the period effects. In Figure 19
(centre right), we show the impact of changing the mean-reversion level, µγ,

of γ
(4)
c . We found that setting the mean reversion level to anything reasonable

and consistent with historical data (Figure 1) had a negligible effect. Therefore
what is plotted here is the result of making a very substantial change in the
mean-reversion level. Changing the mean-reversion level has the longer run
effect of shifting the fans up or down.

• Figure 19 bottom left shows what happens when we increase the volatility, σγ,

of γ
(4)
c . Again, the increase has to be very substantial to see any significant

change. We can see that changing the volatility widens the fans but does not
change the trend.

• Changes to the mean-reversion parameter, αγ, only have a visible impact (Fig-
ure 19, bottom right) if there is also high volatility. The grey fan has a high
volatility only, while the red fan combines high volatility with a lower mean
reversion parameter. Even here, differences are difficult to detect, but, at age
65, the red fan can (just) be seen to expand at a slower rate with narrower
upper and lower bounds.
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Figure 19: England & Wales, males: Sensitivity of mortality rates to
changes in forecasting model parameters. Central case (lower grey fans) µ =
(−0.016, 0.00055, 0.000027), µγ = 0.00806, αγ = 0.8824 and σγ = 0.0127. Pro-
jections (red fans) based on central case with modifications to specified param-
eter values. Top left: µ1 = −0.026. Top right: µ2 = −0.00045. Middle left:
µ3 = −0.000073. Middle right: µγ = 0.25806. Bottom left: σγ = 0.127. Bottom
right: σγ = 0.127 and αγ = 0.7824.
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7 Results for US males

A full discussion of forecasting results for US males is contained in Appendix B,
where we compare and contrast the US and England & Wales results. Our general
aim in Appendix B and this section is to see if the conclusions that we have drawn
in Sections 3 to 6 are specific to the England & Wales males dataset or if they might
apply more generally to the US population for the same age range and gender. In
this section, we focus on model M8 which generates such different results compared
with England & Wales males data that we question the validity of M8 for this dataset
.

Until now, forecasting results for M8A and M8B have appeared to be satisfactory
using England & Wales data. However, Cairns et al. (2007) noted that, when M8
was applied to US data, projections of mortality rates even for cohorts born before
1943 looked implausible, with mortality rates increasing rather than continuing to
fall. Sensitivity tests suggest that the downturn in the fitted γ

(3)
c around 1920 (see

Figure 20, bottom) causes the mortality improvements at ages 75 and 8420 to go into
reverse, until the 1920 to 1940 fitted cohort effects have worked their way through.
It is possible, although unlikely, that this is a genuine effect. A much more likely
explanation is that M8 lacks the necessary factors to fit what are age-period effects
adequately, and that it compensates for this by overfitting the cohort effect with
implausible consequences.21

For the US data, a random-walk process with drift fits better than a stationary
AR(1) process (with α < 1) around a linear trend (indeed our estimation package
struggled to fit any stationary ARIMA model).

Results for model M8A with α fixed at 0.9999 (in effect, a random-walk model)
are shown in Figure 20, and these confirm that M8 produces some rather strange
mortality forecasts at higher ages. The sharp increase in mortality rates at ages 75
and 84 up to 2014 and 2023, respectively, is solely due to the estimated values of
γ

(3)
c and does not depend on the form of model used to explain the future cohort

effect.

The change in direction of the fans (for example, around 2014 for the age 75 fan)

corresponds to a change in direction of the γ
(3)
c process that occurs around 1940

(at the beginning of the projection period: see Figure 20, bottom). It can be seen

from the upper plot in Figure 20 that the fitted γ
(3)
c process seems to be far more

influential when we project US mortality rates than when we project England &
Wales mortality rates (Figure 7). Figure 21 shows that the model still produces
strange (albeit robust) projections when we vary the sample period used to fit the
model.

20We use age 84 as rates at age 85 were not available prior to 1980.
21A related point concerning M2A and M8A was discussed in subsection 3. There, though, the

lack of a second or third age-period component had less serious consequences.
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Figure 20: US, males: Top: Fan charts for mortality rates at ages 65, 75 and
84 model M8A with the autoregressive parameter set to α = 0.9999. Bottom:
Fan charts for the cohort effect, γ

(3)
c , under model M8A with the autoregressive

parameter set to α = 0.9999.
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Figure 21: US, males: Model M8A. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 36 κ

(i)
t values and 52 γ

(3)
c

values. Dots and red fans: historical data from 1968 to 2003 used to estimate the
historical κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t values and

the 45 most-recent γ
(3)
c values. Blue fans: historical data from 1980 to 2003 used

to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the full 24 fitted κ

(i)
t

values and the full 45 fitted γ
(3)
c values.



8 CONCLUSIONS 43

8 Conclusions

One of the main lessons from this investigation into forecasting with stochastic mor-
tality models is the danger of ranking and selecting models purely on the basis of
how well they fit historical data. We propose here new qualitative criteria that fo-
cus on a model’s ability to produce plausible forecasts: biological reasonableness of
forecast mortality term structures, biological reasonableness of individual stochastic
components of the forecasting model (for example, the cohort effect), reasonable-
ness of forecast levels of uncertainty relative to historical levels of uncertainty; and
robustness of forecasts relative to the sample period used to fit the model.

Had we only considered the quality of fit using historical data, we would have chosen
model M8 for modelling England & Wales males mortality, since it had the highest
BIC amongst the 8 models we have examined (Cairns et al. (2007, Table 3)). Model
M8 is a particular extension of the CBD class of models allowing for a cohort effect.
It was specifically designed to fit the historical data well. It was also designed to
satisfy a range of qualitative criteria, such as ease of implementation, parsimony,
and robustness of parameter estimates relative to the period of data employed.
However, when the model was used for forecasting, the forecasts for US males were
so implausible that M8 can be dismissed as an acceptable model for this specific
data set on this ground alone.

M2 had also been found to fit historical data well (Cairns et al. 2007). However,
at least in the way that it has been implemented here, M2 lacks robustness in its
forecasts. Other implementations or extensions of M2 might be more stable.

On the basis of the additional forecast-related criteria, we found that for the datasets
considered here:

• Ignoring parameter uncertainty, the Lee-Carter model, M1, produces forecasts
at higher ages that are ‘too precise’. This problem was not evident from simply
estimating the parameters of the models, but only became apparent when the
models are used for forecasting.

• Model M3 performed in a satisfactory way. It produce biologically plausible
results and seems to be a robust model. However, the model’s dependence on
a single stochastic period effect means that annual changes in mortality rates
are all perfectly correlated across ages which may or may not be considered
appropriate.

• Models M5 and M7 both performed well in the forecasting experiments in this
paper. Both produce biologically plausible results and seem robust.

We started in Cairns et al. (2007) with eight possible stochastic mortality models.
Fitting the models to historical data and assessing the results against a set of quan-
titative and qualitative model-fitting criteria allowed us to reduce this number to
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six. Examining the forecasts produced by these models and assessing them against
a set of qualitative forecast-related criteria has enabled us to further assess their
suitability for a particular dataset and forecasting application. We would recom-
mend a similar methodology be conducted to identify suitable forecast models for
other data sets of interest since results and conclusions are likely to vary by gender,
age range and nationality.
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A Identifiability constraints

Some of the models analysed in this paper (following Cairns et al., 2007) involve
the use of identifiability constraints to ensure uniqueness of parameter estimates. It
is important to know, therefore, what impact, if any, these constraints might have
on forecasts. For example, one might ask: if a different set of constraints had been
applied, would forecasts of mortality rates be different?

When each model is fitted to the historical data, we obtain estimates of the under-
lying mortality rates, which we shall denote by q̂(t, x), which are functions of the

age, period and cohort effects (the β
(i)
x , κ

(i)
t and γ

(i)
t−x) estimated using maximum

likelihood. By construction, a change in the constraints has no effect on the fitted
q̂(t, x).

Stochastic models are then developed to simulate forward the period and cohort
effects. These, in turn, are used to calculate the simulated underlying mortality
rates q(t, x) for future years.

A.1 Model M1

The constraints are:

∑
t

κ
(2)
t = 0

and
∑

x

β(2)
x = 1.

If different constraints were applied (e.g. κ
(2)
2004 = 0) then we can make the following

remarks:

• The estimated β
(i)
x and κ

(i)
t will change and the maximum-likelihood estimates

of the parameters of the random walk will change.

• The joint22 distribution of the forecast q(t, x) will not be affected by the change.

The reason for this is that if the random-walk model is the “right” model under the
original constraints, then it is still the “right” model under the revised constraints
(albeit with different parameter values).

22The joint distribution refers to the probability distribution linking mortality rates at different
ages and in different years, as well as the marginal distribution at individual ages and in individual
years.
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A.2 Model M2B (ARIMA(1,1,0) model for the cohort ef-
fect)

The constraints are:

∑
t

κ
(2)
t = 0,

∑
x

β(2)
x = 1,

∑
x,t

γ
(3)
t−x = 0,

and
∑

x

β(3)
x = 1.

If different constraints were applied to β
(2)
x and κ

(2)
t then:

• the estimated β
(1)
x , β

(2)
x and κ

(2)
t will change and the maximum-likelihood es-

timates of the parameters of the random-walk model for κ
(2)
t will change; and

• the joint distribution of the forecast q(t, x) will not be affected by the change.

If different constraints were applied to β
(3)
x and γ

(3)
t−x then:

• the estimated β
(1)
x , β

(3)
x and γ

(3)
t−x will change;

• the maximum-likelihood estimates of the parameters of the ARIMA(1,1,0)

model for γ
(3)
t−x will not change; and

• the joint distribution of the forecast q(t, x) will not be affected by the change.

A.3 Model M5

There are no identifiability constraints.
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A.4 Model M7

The constraints are (see Cairns, Blake and Dowd, 2008)

c1∑
c=c0

γ(4)
c = 0

c1∑
c=c0

cγ(4)
c = 0

c1∑
c=c0

c2γ(4)
c = 0

where c0 and c1 are first and last years of birth that we fit the cohort effect to. The
impact of this choice is that if we fit a quadratic function to the estimated γ

(4)
c then

the least squares fit is in fact constant and zero. In practice, this means that γ
(4)
c

will be fluctuating around zero with no discernible linear or quadratic trends.

In more general terms, we have three constraints which can be specified and which
might be different from the current version. Different constraints will affect the
level, slope and curvature of the fitted γ

(4)
c .

Suppose we make a change to the level of the fitted γ
(4)
c but not to the slope or

curvature. We can continue to fit a random-walk model to the three period effects
and an AR(1) model with a non-zero mean-reversion level to the cohort effect. If
we do this then:

• the joint distribution of the forecast q(t, x) will not be affected by the change.

If a change in the constraints affects the slope but not the curvature of the fitted
γ

(4)
c then

• the joint distribution of the forecast q(t, x) will not be affected by the change,
provided we continue to use a random-walk model for the period effects and
(more importantly) our stochastic model for γ

(4)
c is an AR(1) model around a

deterministic, linear trend.

In other words, we need to modify our stochastic model for γ
(4)
c .

If a change in the constraints affects the curvature of γ
(4)
t−x then:

• the joint distribution of the forecast q(t, x) will be affected by the change.

The change in future dynamics relates to the impact of the change of constraint
on the period effects. Specifically, a change in the curvature of γ

(4)
t−x also changes
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the curvature of the fitted period effect κ
(1)
t . If a random-walk model for κ

(1)
t was

the “right” model under the original constraints, the “right” model under the new
constraints will not be a random-walk model.

A.5 Model M8

There is one constraint:

∑
x,t

γ
(3)
t−x = 0.

Thus a change in the constraint will not have an impact on fitted or projected mor-
tality rates provided M8A continues to use an AR(1) model around a deterministic
linear trend, and provided M8B continues to use an AR(1) model around a non-zero
mean.
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B Figures for the US males data, 1968 to 2003

In this Appendix, we analyse the US males data from 1968 to 2003, and provide
similar figures and discussion to that for England & Wales considered in the main
text:

• In Figure 22, by way of reminder, we repeat certain outputs from the anlysis
in Cairns et al. (2007): the cohort effect for models M2, M3, M7 and M8,
with the corresponding age effects. For M2, the age effect is a non-parametric
function estimated at each age; for M8, the age affect is assumed to be linear
in age; for M3, the age effect for component 3 is assumed to be constant; and
for M7, the age effect for component 4 is assumed to be constant.

– M7: γ
(4)
c is more random here than we saw for the England & Wales

data (Figure 1). Nevertheless, there is a discernible pattern that might

be consistent with γ
(4)
c being an AR(1) process, although other models

might also be suitable. This relative randomness in γ
(4)
c supports the

view that the US has a much less significant cohort effect than England
and Wales for this gender and age range.

– M2: Unlike the England & Wales data, γ
(3)
c exhibits a strong linear trend

(Figure 22).

– M3: Unlike the England & Wales data, the shape of γ
(3)
c is quite different

from the M2 cohort effect. However, the shape of γ
(3)
c is relatively similar

to the England & Wales cohort effect (Figure 1).

– M8: In contrast with the England & Wales data, the magnitude of β
(3)
x

is increasing with age.

• In Figure 23, we have plotted fan charts for the cohort effect for models M2A,
M2B, M7, M8A and M8B using the same stochastic models in each case as for
the England & Wales data.

– M7: the fitted AR(1) mean reversion value is very high, implying that
the fans very quickly reach their stationary limits.

– M2A and M2B: in contrast with the England & Wales plots, the fans for
γ

(3)
c seem more acceptable in terms of their spread. The two fans look

similar, having a similar width and rate of expansion. We might speculate
that the models are almost identical since an ARIMA(1,1,0) model (M2B
– equation 2) with α = 1 is identical to an ARIMA(0,2,1) model (M2A –
equation 2) with α = 0. However, a detailed look at the M2A and M2B
output reveals parameter estimates that are quite far from this situation:
that is, the fitted M2A and M2B are structurally quite different even
though their outputs are quite similar.
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– M3A and M3B: here, the fans mimic the pattern that emerged when we
analysed the England & Wales data. M3A, in particular, has fans that
widen out at a fast rate without limit, making the results produced by
M3A seem potentially unreasonable for this dataset.

– M8A and M8B: these reveal substantial differences. M8A is mean revert-
ing around an obvious linear trend. M8B involves mean reversion to a
constant level rather than to a linear trend. This is not immediately obvi-
ous from the output, but is explained by the fact that the mean-reversion
level is around -6, with a very slow mean-reversion rate.

Since M8B seems to produces unreasonable results for the dataset under
consideration, it was decided not to include it in the remaining plots.

• In Figures 24 and 25, we have plotted fan charts under each model for mortality
rates at ages 65, 75 and 84.23 Similar comments to the England & Wales data
apply here, except for M8A. The problems with M8A are discussed in Section
7.

The overlaid fans reveal bigger differences between models than the England
& Wales data: the variation in the width of the fans and in their central trends
seem to vary more between models.

• Figure 26 indicates that there is relatively little difference between M2A and
M2B when we look at projected mortality rates.

In contrast, Figure 27 reveals that the choice between M3A and M3B has a
significant impact on forecast rates of mortality. The results for M3A reveal
what might be considered to be substantial uncertainty in future mortality
rates.

• In Figures 28 to 35, we look at the robustness of model projections relative
to the sample period used when models are fitted to the historical data and
to the number of fitted κ

(i)
t and γ

(i)
c used to estimate the forecasting model

parameters. We find that our conclusions are similar to those for the England
& Wales data. Mortality projections under models M1, M3, M5 and M7 look
robust, while those under M2A and M2B are less so. For M8A, although the
projections look very peculiar for ages 75 and 85, the results look reasonably
robust, albeit not as robust as M1, M3, M5 and M7.

• In Figures 36 and 37, we have plotted fans for the survivor index for a cohort of
US males aged 65 in 2003 under M1, M2B, M3B, M5, M7 and M8A. Note that,
in all cases, the model for the cohort effect is irrelevant here since a single value
of γ

(3)
c required for this cohort has already been estimated from the historical

data. From these models, M2A, and M3B are slightly high compared with

23We use age 84 here as historical rates at age 85 and above are not available for 1968 to 1979.
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the rest, and M1 is narrower. But M8A the fan chart reflects the fact that
mortality rates at higher ages under M8A rapidly depart from their historical
trends (Figure 35).
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Figure 22: US males: Fitted cohort effects for models M2, M3, M7 and M8.
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Figure 23: US males: Fan charts for the projected cohort effect. For M1 and M5,
there is no cohort effect so no fan charts have been plotted.
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Figure 24: US males: Mortality rates, q(t, x), for models M1, M2A, M2B, M5, M7
and M8A for ages x = 65 (grey), 75 (red), and 84 (blue). The dots show historical
mortality rates for 1968 to 2003.
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Figure 25: US, males: Mortality rates, q(t, x), for models M1 (green), M2B (yellow),
M3B (cyan), M5(grey), M7 (red), and M8A (blue) with fans overlaid for ages x = 65,
75, and 84. The dots show historical mortality rates for 1968 to 2003.
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Figure 26: US, males: Fan charts comparing models M2A (grey fans) and M2B (red
fans). Top left: historical (dots) and forecast (fans) values for the cohort effect,

γ
(3)
c . Top right, bottom left and right: historical (dots) and forecast (fans) mortality

rates, q(t, x), for ages 65, 75 and 84.
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Figure 27: US, males: Fan charts comparing models M3A (grey fans) and M3B (red
fans). Top left: historical (dots) and forecast (fans) values for the cohort effect,

γ
(3)
c . Top right, bottom left and right: historical (dots) and forecast (fans) mortality

rates, q(t, x), for ages 65, 75 and 84.
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Figure 28: US, males: Model M1. Cohort effect (absent for this model) and mortality
rates for ages 65, 75 and 84. Dots and grey fans: historical data from 1968 to 2003
used to estimate the historical κ

(2)
t ; forecasting model uses the 36 κ

(2)
t values. Dots

and red fans: historical data from 1968 to 2003 used to estimate the historical κ
(2)
t ;

forecasting model uses the 24 most recent κ
(2)
t values. Blue fans: historical data

from 1980 to 2003 used to estimate the historical κ
(2)
t ; forecasting model uses the

full 24 κ
(2)
t values.
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Figure 29: US, males: Model M2A. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 36 κ

(2)
t values and the 52

γ
(3)
c values. Dots and red fans: historical data from 1968 to 2003 used to estimate

the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(2)
t values

and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data from 1980

to 2003 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the

full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 30: US, males: Model M2B. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 36 κ

(2)
t values and the 52

γ
(3)
c values. Dots and red fans: historical data from 1968 to 2003 used to estimate

the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(2)
t values

and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data from 1980

to 2003 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the

full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 31: US, males: Model M3A. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 36 κ

(2)
t values and the 52

γ
(3)
c values. Dots and red fans: historical data from 1968 to 2003 used to estimate

the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(2)
t values

and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data from 1980

to 2003 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the

full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.
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Figure 32: US, males: Model M3B. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical β

(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 36 κ

(2)
t values and the 52

γ
(3)
c values. Dots and red fans: historical data from 1968 to 2003 used to estimate

the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(2)
t values

and the 45 most-recent γ
(3)
c values. Crosses and blue fans: historical data from 1980

to 2003 used to estimate the historical β
(i)
x , κ

(i)
t and γ

(i)
c ; forecasting model uses the

full 24 fitted κ
(2)
t values and the full 45 fitted γ

(3)
c values.



B FIGURES FOR THE US MALES DATA, 1968 TO 2003 64

1900 1920 1940 1960 1980

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Model M5

ga
m

m
a3

1960 1980 2000 2020 2040

0.
01

0.
02

0.
03

Age 65 Mortality Rates

M
or

ta
lit

y 
ra

te

1960 1980 2000 2020 2040

0.
02

0.
04

0.
06

0.
10

Age 75 Mortality Rates

M
or

ta
lit

y 
ra

te

1960 1980 2000 2020 2040

0.
05

0.
10

0.
15

Age 83 Mortality Rates

M
or

ta
lit

y 
ra

te

Figure 33: US, males: Model M5. Cohort effect (absent for M5) and mortality rates
for ages 65, 75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to
estimate the historical κ

(i)
t ; forecasting model uses the 36 κ

(1)
t and κ

(2)
t values. Dots

and red fans: historical data from 1968 to 2003 used to estimate the historical κ
(i)
t ;

forecasting model uses the 24 most-recent κ
(1)
t and κ

(2)
t values. Blue fans: historical

data from 1980 to 2003 used to estimate the historical κ
(i)
t ; forecasting model uses

the full 24 κ
(1)
t and κ

(2)
t values.
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Figure 34: US, males: Model M7. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 36 κ

(i)
t values and 52 γ

(4)
c

values. Dots and red fans: historical data from 1968 to 2003 used to estimate the
historical κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t values and the

45 most-recent γ
(4)
c values. Crosses and blue fans: historical data from 1980 to 2003

used to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the full 24 fitted

κ
(i)
t values and the full 45 fitted γ

(4)
c values.
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Figure 35: US, males: Model M8A. Cohort effect and mortality rates for ages 65,
75 and 84. Dots and grey fans: historical data from 1968 to 2003 used to estimate
the historical κ

(i)
t and γ

(i)
c ; forecasting model uses the full 36 κ

(i)
t values and 52 γ

(3)
c

values. Dots and red fans: historical data from 1968 to 2003 used to estimate the
historical κ

(i)
t and γ

(i)
c ; forecasting model uses the 24 most-recent κ

(i)
t values and the

45 most-recent γ
(3)
c values. Crosses and blue fans: historical data from 1980 to 2003

used to estimate the historical κ
(i)
t and γ

(i)
c ; forecasting model uses the full 24 fitted

κ
(i)
t values and the full 45 fitted γ

(3)
c values.



B FIGURES FOR THE US MALES DATA, 1968 TO 2003 67

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M1

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M2B

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M3B

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M5

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M7

2005 2010 2015 2020 2025

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
vo

r 
In

de
x

Model M8A

Figure 36: US, males: Fan charts for the survivor index S(t, 65) for the cohort aged
65 at the start of 2005, for models M1, M2B, M3B, M5, M7 and M8A.
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Figure 37: US, males: Fan charts for the survivor index S(t, 65) for the cohort aged
65 at the start of 2005, for models M1 (green), M2B (yellow), M3B (cyan), M5
(grey), M7 (red) and M8A (blue).
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