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Abstract  

This study sets out a framework to evaluate the goodness of fit of stochastic mortality 

models and applies it to six different models estimated using English & Welsh male 

mortality data. The methodology exploits the structure of each model to obtain 

various residual series that are predicted to be iid standard normal under the null 

hypothesis of model adequacy. Goodness of fit can then be assessed using 

conventional tests of the predictions of iid standard normality. The models considered 

are Lee-Carter’s 1992 one-factor model, a version of Renshaw-Haberman’s 2006 

extension of the Lee-Carter model to allow for a cohort effect, Currie’s 2006 age-

period-cohort model, which is a simplified version of the Renshaw-Haberman model, 

the Cairns-Blake-Dowd 2006 two-factor model and two generalised versions of the 

latter that allow for a cohort effect. For the data set considered, there are some notable 

differences amongst the different models, but none of the models performs well in all 

tests and no model clearly dominates the others.  
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1. Introduction 

 

In an earlier study, Cairns et al. (2007) examined eight different stochastic mortality 

models. These models – variously labelled M1 to M8 – were fitted to both English & 

Welsh and US male mortality data (over ages 60-89), and their results led the authors 

to conclude that five of these models – M2, M3, M6, M7 and M8 – provided the “best 

fits” to the two data sets based on a set of qualitative and quantitative criteria.1 M2 is 

Renshaw and Haberman’s generalisation of the one-factor Lee-Carter model (labelled 

M1) to incorporate a cohort effect (Renshaw and Haberman, 2006), M3 is the age-

period-cohort (APC) model which is a simplification of M2 (Currie, 2006; see, also, 

Osmond, 1985 and Jacobsen et al., 2002), and M6, M7 and M8 are different 

generalisations of the two-factor model of Cairns, Blake and Dowd (2006) (labelled 

M5) that also incorporate a cohort effect.  

 

The earlier study used both qualitative and quantitative evaluation criteria, where the 

latter consisted primarily of Bayesian Information Criterion (BIC) rankings 

complemented by nesting tests in cases where one model is a special case of another. 

The present study builds on this work in proposing a more complete and systematic 

methodology for establishing the quantitative goodness of fit (GOF) of a subset of the 

above models based on formal hypothesis testing. The objective is twofold: (a) for 

each model, to determine the complete set of testable implications that follow from 

the null hypothesis that the model provides a good fit to the historical data; and (b) to 

systematically test whether those predictions actually hold for one particular data set.  

 

More specifically, we use what we know about the structure of each model to 

construct the following series that are predicted to be (at least approximately) 

independently and identically distributed standard normal (hereafter abbreviated to 

‘iid N(0,1)’) under the null hypothesis:  

                                                 
1In particular, they found that for the English & Welsh males data, the Bayes Information Criterion 
ranked the models as follows: 1=M8, 2=M7, 3=M2, 4=M6, 5=M3, 6=M1, 7=M4 and 8=M5. They then 
dropped M4 (P-splines; Currie et al., 2004) from further analysis, in part because of these findings and 
in part because of its inability to project future stochastic mortality rates. They went on to obtain the 
following ranking of the remaining models on US data: 1=M2, 2=M7, 3=M3, 4=M8, 5=M6, 6=M1, 
7=M5.   
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● Standardised mortality rate residuals or mortality residuals for short. The 

mortality residuals are the differences between the realised (or actual) 

mortality rates for any given set of ages and years and their model-generated 

equivalents (i.e., fitted values). Once standardised, these are predicted to be 

approximately iid N(0,1) under the null hypothesis.  

● Standardised residuals of the model’s unobservable state variables (SVs) or SV 

residuals for short. The SVs are the stochastic factors driving the dynamics of 

the model, and, once standardised, are also assumed to be approximately iid 

N(0,1). 

● Standardised residuals for the prices (or fair values) of mortality-dependent 

financial instruments derived from the model (or price residuals for short), 

where the residuals concerned are the differences between these prices and 

their model-based equivalents, and these too should be approximately iid 

N(0,1) under the null hypothesis.  

 

In particular, we apply the GOF framework to six models, namely, M1, M2B (a 

version of M2), M3B (a version of M3), M5, M6 and M7.2,3 Of these, models M2B, 

M3B, M6 and M7 involve a cohort effect, whereas M1 (Lee-Carter) and M5 (Cairns-

Blake-Dowd) do not. Each model was estimated using a single data set involving 

LifeMetrics data for the mortality rates of English & Welsh males4 for ages from 64 

to 89 and spanning the years 1961 to 2004.5 As such, the results presented herein are 

not necessarily representative of what might be obtained for other data sets. They do 

however serve to illustrate the methodology and potential pitfalls in certain stochastic 

mortality models. 

 

                                                 
2 M2B and M3B are the versions of M2 and M3 that assume an ARIMA(1,1,0) process for the cohort 
effect. 
3 We do not consider M8 in this paper because the results presented in Cairns et al. (2008) suggest that 
its forecasts on US mortality data are unreliable. 
4 See Coughlan et al. (2007) and www.lifemetrics.com for the data and a description of LifeMetrics. 
The original source of the data was the UK Office for National Statistics. 
5 The under-64s were excluded because it is the mortality rates of older people that are of the greatest 
financial significance to pension funds and annuity providers – and this is our main interest in 
conducting this series of studies on stochastic mortality models – and the mortality rates of those over 
age 89 were excluded because of poor data reliability. We would also emphasise that models M5-M7 
were specifically designed for the higher age ranges, whereas the other models considered in this study 
were designed to fit younger ages as well. 
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The paper is organised as follows. Section 2 explains our notation. Section 3 outlines 

and implements the testing framework for each model’s mortality residuals. Section 4 

does the same for each model’s SV residuals. Section 5 provides some test results for 

the price of an illustrative mortality-dependent financial contract, namely a period 

term annuity. Section 6 concludes. 

 

2. Notation 

  

We begin with some notation, and distinguish between the following mortality rates: 

● ),( xtq  = true (and unobserved) mortality rate, i.e., the probability of death 

between times t and t+1 for individuals aged x at time t; 

● ),(~ xtq  = crude estimate of year- t  mortality rate based on observed deaths and 

exposures data; 

● ),( xtq  = estimated year- t  mortality rate based on data up to and including 

year t, and using a specified mortality model (i.e., the fitted value from the 

model). 

The crude mortality rate ),(~ xtq  is linked (by assumption) to the crude death rate, 

),(~ xtm , via ( ) ( )( )1q t ,x exp m t,x= − −� � .  

 

The models we consider involve the following SVs: 

● )(i
xβ , )(i

tκ  and )(i
cγ  are the true (unobserved) age, period and cohort effects 

given that the relevant specified model is true; 

● )(i
xβ , )(i

tκ  and )(i
cγ  are their estimates given data from years 0t  to 1t  and ages 

0x  to 1x , and which are used to calculate the ),( xtq ; 

● ( )i
xβ̂ , ( )i

tκ̂  and ( )i
cγ̂  are their one-step ahead forecasts given data from years 0t  to 

1 1t −  and ages 0x  to 1x . 

The cohort effects are estimated for years of birth 0c  to 1c , where the year of birth is 

equal to t x− . 
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3. Assessing the Goodness of Fit of the Mortality Residuals 

 
 
Assessing goodness of fit involves three stages: estimation, implementation and 

testing.  

 

3.1. Estimation  

 

We start by selecting a lookback window on which to base our initial estimates. We 

choose a rolling 21-year window comprising the current and previous 20 years’ 

historical observations.6   

 

We then estimate the model and obtain estimates of the unobserved SVs )(i
xβ , )(i

tκ  

and )(i
cγ  and model-based estimates of the mortality rate ),( xtq . In the present 

context, the sequence of 21-year rolling windows gives us estimates for 24 years 

between 1981 and 2004.7   

 

The mortality residual is calculated as the difference between ),(~ xtq  and ( , )q t x . If 

the underlying random variable, the number of deaths, follows the assumption of a 

Poisson distribution, then the distribution of deaths can be approximated by a normal 

distribution as the number of deaths gets ‘large’, as seems reasonable when we 

consider the size of the male population of England & Wales. If a model’s estimates 

are adequate, the mortality residuals should also be approximately normal. The 

standardised mortality residuals – found by subtracting the residual mean and dividing 

                                                 
6 We could also have a chosen a window that expands over time to take account of the fact that our data 
accumulate over time. Having started with 20 observations to obtain our estimates for 1981, we might 
have used 21 observations to obtain estimates for 1982, and so forth. However, an expanding window 
would complicate the underlying statistics. A rolling fixed-length window is more straightforward to 
deal with.  
7 Note that each additional year on the length of the rolling window would reduce our number of 
observations by 1. A 21-year rolling window seems to strike a reasonable balance between the 
conflicting needs, on the one hand, for the window to be long enough to provide statistically reliable 
estimates, and, on the other, to have enough observations to be able to carry out convincing tests. 
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the result by the residual standard deviation – are then predicted to be approximately 

iid N(0,1).8 

 

By way of example, and to make our discussion of estimation issues more concrete, 

consider the case of model M1 (whose structure is set out in equations (1) and (2) 

below): 

1. We first take the exposures and deaths data from 1961 to 1981 and fit the 

model to obtain estimates for the age effects (1)
xβ  and (2)

xβ  and the period 

effect (2)
tκ  (see equation (1) below).  

2. We then insert these into (1) to obtain the model-based death rate ( , )m t x  and 

thence the model-based mortality rate ( , )q t x  and the mortality residual 

( ) ( )q t ,x q t ,x−�  for 1981. 

3. We repeat this process using data for 1962-1982 to get the mortality residual 

for 1982; we repeat again using data for 1963-1983 to obtain the 1983 

mortality residual, and carry on in the same manner until we use data for 1984-

2004 to obtain the 2004 mortality residual.  

 

The other models are estimated in comparable ways.  

 

3.2. Implementation 

 

We now summarise the implementation for each model9 in turn. 

 

Model M1 

Model M1, the original Lee-Carter model, postulates that the true underlying death 

rate, ( , ) log(1 ( , ))m t x q t x= − − , satisfies the following equation: 

 

  (1) (2) (2)log ( , ) x x tm t x β β κ= +                                          (1)  

 

                                                 
8 For convenience, we use the term ‘tested for iid N(0,1)’ as shorthand for ‘tested for the predictions of 
iid N(0,1)’, where these predictions are those of a zero mean, a unit variance, a zero skewness, a 
kurtosis equal to 3, and, of course, independent and identically distributed.  
9 For additional details on each model, see Cairns et al. (2007, 2008). 
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where the state variable )2(
tκ  follows a one-dimensional random walk with drift (Lee 

and Carter, 1992): 

 

           (2) (2) (2)
1t t tCZκ κ μ−= + +                                                 (2) 

 

in which μ  is a constant drift term, C  is a constant volatility and ( )2
tZ  is a one-

dimensional iid N(0,1) error. 

 

Now let ),( xtD  be the number of deaths between t and t+1 at age x last birthday, and 

let ),( xtE  be the corresponding exposures. From these, we calculate the crude death 

rates ),(/),(),(~ xtExtDxtm = . Given the Poisson assumption about deaths and given 

that the expected number of deaths is large, the number of deaths is approximately 

normal with mean and variance both equal to ( , ) ( , )m t x E t x . It follows that the 

standardised mortality residuals  

 

),(/),(
),(),(~

),(
xtExtm
xtmxtmxt −

=ε                                           (3) 

 

should be approximately iid N(0,1) under the null hypothesis.10,11 Moreover, we 

would expect this prediction to hold both when we follow any given age from one 

year to the next and when we compare the death rates for different ages during the 

same year. Thus, the matrix of ),( xtε  terms should be approximately iid N(0,1) in 

both dimensions.12  

 

                                                 
10 We say ‘approximately’ in part because we are using estimates of the SVs rather than their true 
values, in part because there are likely to be measurement errors in the data (e.g., estimates of 
exposures are likely to be subject to errors) and in part because the assumed Poisson process with a 
fixed arrival or mortality rate at any point in time is likely to be an over-simplification of reality.  
11 The reader will also note that (3) strictly refers to death-rate rather than mortality-rate residuals. 
However, the former will have the same distribution as the latter, so for expositional purposes it is 
convenient to ignore the difference between them.  
12 This prediction holds for each mortality model.  
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We have 26 24 624× =  observations in the ),( xtε  matrix (i.e., we have observations 

for each of 26 different ages spanning 64 to 89, over 24 different years spanning 1981 

to 2004).13  

 

Model M2B 

This model, which is a particular extension of the Lee-Carter model to allow for a 

cohort effect, postulates that ( , )m t x  satisfies: 

   
(1) (2) (2) (3) (3)log ( , ) x x t x cm t x β β κ β γ= + +                                     (4)  

 

where the state variable )2(
tκ  follows (2) and (3)

cγ  is a cohort effect where c t x= −  is 

the year of birth. We follow Cairns et al. (2008) and CMI (2007) and model the 

cohort effect, (3)
cγ , as an ARIMA(1,1,0) process that is independent of )2(

tκ :14 

 
( ) ( )( ) ( )3 3

1c c cZ γ
γ γ − γ γΔγ =μ +α Δγ −μ +σ                                (5) 

 

Model M3B 

This model is a simplified version of M2B. It postulates that ( , )m t x  satisfies: 

 

  (1) (2) (3)log ( , ) x t cm t x β κ γ= + +                                         (6)  

 

where the variables (including the cohort effect) are the same as for M2B.  

 

Model M5 

M5 is a reparameterised version of the Cairns-Blake-Dowd (CBD) two-factor 

mortality model (Cairns et al., 2006). The model postulates that ),( xtq  satisfies: 

 
                                                 
13 This is also the case for every model. 
14 Cairns et al. (2008) found that a better statistical fit was provided by an ARIMA(0,2,1) model 
(labelled M2A). However, this alternative model was much less reasonable from a biological 
perspective than M2B, which used ARIMA(1,1,0). Note too that the gamma-related parameters in (5) –  

γμ  and so forth  – are specific to (3)
cγ , but we do not make this explicit in order to avoid cumbersome 

notation (i.e., (3)γ
μ , etc.). We apply the same principle throughout the paper. 
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  logit (1) (2)( , ) ( )t tq t x x xκ κ= + −                                        (7)  

 

where x  is the average of the ages used in the dataset, and where the state variables 

now follow a two-dimensional random walk with drift: 

 

             1t t tCZκ κ μ−= + +                                               (8) 

 

where μ  is a constant 12×  drift vector, C  is now a constant 22×  upper triangular 

‘volatility’ matrix (and more precisely, the Choleski ‘square root’ matrix of the 

variance-covariance matrix), and tZ  is a two-dimensional standard normal variable, 

each component of which is independent of the other.15  

 

Model M6 

M6 is a generalised version of M5 with a cohort effect, i.e.,  

 

logit (1) (2) (3)( , ) ( )t t cq t x x xκ κ γ= + − +                                      (9)  

 

where the tκ  process follows (8) and the (3)
cγ  process follows (5). Thus, M6 has the 

same tκ  process as M5 and the same (3)
cγ  process as M2B and M3B.    

 

Model M7 

Our last model, M7, is another generalised version of M5 with a cohort effect, i.e.,  

 

  logit (1) (2) (3) 2 2 (4)( , ) ( ) (( ) )t t t x cq t x x x x xκ κ κ σ γ= + − + − − +                   (10)  

 

                                                 
15 The reparameterisation of the original model is ( ) ( )2

2t A tκ =  and ( ) ( ) ( )1 2
1t t x A tκ −κ = , where ( )1A t  

and ( )2A t  are the state variables of the original model. An additional difference between the original 
CBD model and the reparameterised version M5 is that x in M5 refers to age at time t, whereas in the 
original CBD model it refers to age at some initial time 0. 
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where the state variables tκ  in this case follow a three-dimensional random walk with 

drift, 2
xσ  is the variance of the age range used in the dataset,16 and (4)

cγ  is a cohort 

effect that is modelled as an AR(1) process.  

 

3.3 Test Results 

 

The hypothesis tests used in this section aim to identify whether the mortality 

residuals described above are consistent with iid N(0,1) as assumed under the null 

hypothesis.  The residuals are tested in two ways: (i) by year, i.e., aggregated across 

ages; and (ii) by age, i.e., aggregated across years. Each of these involves four types 

of tests: 

● t-test of mean prediction; 

● Variance ratio (VR) test – see Cochrane (1988), Lo and MacKinley 

(1988,1989); 

● Normality test based on the skewness and kurtosis predictions – see Jarque 

and Bera (1980); 

● Serial correlation test (based on the test statistic 22 / (1 )Nρ ρ− −  which is 

distributed under the null hypothesis as a t-distribution with N-2 degrees of 

freedom). 

 

A ‘statistically significant’ result for any of these tests – which we take to be any test 

which produces a p-value of less than 1% – indicates inconsistency with iid N(0,1).  

 

As the analysis is quite involved, we defer any detailed discussion of these individual 

tests to an Appendix and instead report only summary results in the main text. Perhaps 

the most useful summary results are the percentages of the test results for each model 

that are significant at the 1% level. These are reported in Table 1. 

 

 

                                                 
16 The generalisation incorporates an additional quadratic age effect as well as a cohort effect. 
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Table 1: Percentages of ( , )t xε Test Results Significant at the 1% Level 

Model By Year By Age Average Ranking by 
Average 

M1 31.3 30.8 31.1 =4 
M2B 8.3 7.7 8.0 1 
M3B 31.3 30.8 31.1 =4 
M5 32.3 33.7 33.0 6 
M6 15.6 18.3 17.0 3 
M7 16.7 14.4 15.6 2 

Notes: Based on the Tables in the Appendix. ‘Average’ refers to the average of the ‘By Year’ and ‘By 
Age’ results. 
 

 

Under the null hypothesis, we would expect these percentages to be around 1%. 

Instead, we find that these percentages lie in the range 7.7% to 33.7%. This indicates 

that all models are problematic showing deviations from iid N(0,1) in a higher-than-

expected percentage of tests. However, we can also see that by this criterion M2B gets 

( , )t xε  scores that are better than any of the other models. M7 and M6 come second 

and third respectively. The other models come some way behind M7 and M6 and 

there is not much to choose between them. 

 

4. Assessing the Goodness of Fit of the State Variable Residuals 

 

4.1 Estimation 

 

The derivation of the test results for the SV residuals is complicated by the fact that 

the SVs are unobservable. We therefore need to obtain estimates of the unobserved 

state variables ( )(i
tκ  and )(i

cγ ) using 21 years of data up to and including year t. If we 

had direct observations of the state variables ( ( )i
tκ�  and ( )i

cγ� ) in the same way that we 

have direct observations of the mortality rates, ( , )q t x� , we could have proceeded in 

the same way as in the previous section: we would have obtained the period-effect 

residuals as ( ) ( )i i
t tκ κ−�  and the cohort-effect residuals as ( ) ( )i i

c cγ γ−� . However, this is 

not possible because ( )i
tκ�  and ( )i

cγ�  are not directly observable. We therefore need 

proxies for these observations, and we obtain these proxies using 1-step ahead 

forecasts based on a model estimated using 20 years of data up to and including year 

t-1. If we denote these forecasts by ( )ˆ i
tκ  and ( )ˆ i

cγ , the estimated period-effect residuals 
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become ( ) ( )ˆ i i
t tκ κ−  and the estimated cohort-effect residuals become ( ) ( )ˆ i i

c cγ γ− . We 

now standardise each of these series by subtracting its estimated mean and dividing 

the result by its estimated one-period-ahead standard deviation. The resulting 

standardised SV residual series are then each predicted to be approximately iid N(0,1) 

under the null hypothesis.  

 

For each model, we have one or more sets of standardised SV residuals. The number 

of standardised SV residual series depends on the model – it is equal to the number of 

period effects (which varies from 1 to 3) and the number of cohort effects (which is 

either 0 or 1) in each model. The number of standardised SV residual series in each 

model therefore varies from 1 to 4.  

 

As an aside, the fact that the model is re-estimated for each year in our sample period 

means that we are working with estimates for μ  and C  that are regularly updated. 

Accordingly, in the discussion below, we let tμ  and tC  denote their estimates based 

on data up to and including year t. 

 

4.2 Implementation 

 

We now consider each model in turn.  

 

Model M1 

For M1, we use (2) to obtain estimated values of )2(
tκ  (i.e., )2(

tκ ) and 1-step ahead 

forecasts of )2(
tκ  (i.e., )2(ˆtκ ), viz.:17 

 
(2) (2) (2)

1 1 1t t t t tC Z− − −= + +κ κ μ                                        (11) 

(2) (2)
1 1ˆt t t− −= +κ κ μ .                                            (12) 

                                                 
17 When we use the 20-year window to obtain the (2)ˆtκ  forecasts, we need to ensure that any constraints 
in the estimation process are used in a fashion consistent with way in which the (2)

tκ  estimates were 

obtained. Thus, for M1, we use the constraints 1980 (2)
1961

0tt
κ

=
=∑  and 1

0

(2) 1x
xx x

β
=

=∑  for both (2)
tκ  and 

(2)ˆtκ . 
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Substituting (12) into (11) and rearranging gives the standardised SV residuals: 

 

 (2) 1 (2) (2)
1 ˆ( )t t t tZ C−

−= −κ κ .                                       (13) 

 

In (13), (2)
tκ  is the estimated value of (2)

tκ  based on data from t-20 up to and including 

time t, and )2(ˆtκ  is the 1-step ahead forecasted value of (2)
tκ  based on data from t-20 

up to and including time t-1. This gives us 24 values of ( )2
tZ  and, under the null 

hypothesis, these are predicted to be iid N(0,1).  

 

Model M2B 

For M2B, we obtain the standardised SV residuals ( )2
tZ  using (13), and we model the 

cohort effect (3)
cγ  and recover the standardised cohort-effect residuals ( )

cZ γ  using (5). 

Both standardised residual series ( )2
tZ  and ( )

cZ γ  are predicted to be iid N(0,1). 

 

We can also test the properties of both sets of estimated residuals simultaneously. 

Since ( )2
tZ  and ( )

cZ γ  should each be iid N(0,1) and independent of each other,  

statistical theory tells us that the sum of squares of 2 independent N(0,1) variates is 

distributed as a chi-squared with 2 degrees of freedom. It therefore follows that: 

 
(2) 2 ( ) 2[ ] [ ]t t cY Z Z γ= +  ~ 2

2χ  

 ⇒    ( )t tp F Y=  ~ iid U(0,1)                                          (15) 

 

where (.)F  is the distribution function for a chi-squared with 2 degrees of freedom. 

Under the null, the series tp  should be distributed as iid standard uniform (or iid 

U(0,1)). If we wished to, we could then test this series using standard uniformity tests 

such as Kolmogorov-Smirnov, Kuiper, and Lilliefors, etc.18 However, testing is easier 

(and we have more tests available) if we put tp  through the following transformation: 

                                                 
18 For more on these tests, see, e.g., Dowd (2005, chapter 15 appendix).  
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( )1
t th p−=Φ  ~ iid N(0,1)                                       (16) 

 

where (.)Φ  is the distribution function for a standard normal variable. This 

transformation gives us an ‘observed’ series th  that is distributed as iid N(0,1) under 

the null. We can then test whether th  is iid N(0,1). 

 

Model M3B 

The standardised SV residuals for M3B are obtained in exactly the same way as for 

M2B. 

 

Model M5 

For model M5, we use (8) to obtain the 2x1 vector tκ  and the 1-step ahead forecasts 

tκ̂ : 

   1 1 1t t t t tC Z− − −= + +κ κ μ                                             (17) 

1 1ˆt t t− −= +κ κ μ                                                    (18) 

⇒ 1
1 ˆ( )t t t tZ C−

−= −κ κ                                                  (19) 

 

Under the null, each standardised SV residual series – that is, (1)
tZ  and (2)

tZ  – is iid 

N(0,1) and independent of the other. 

 

We now test (1)
tZ  and (2)

tZ  for iid standard normality using conventional tests, and 

additionally apply a standard correlation test to check the prediction that these have a 

zero correlation.  

 

As with M2B and M3B, we can also test the properties of both sets of standardised 

residuals simultaneously. In this case, under the null hypothesis, 

 
(1) 2 (2) 2[ ] [ ]t t tY Z Z= +  ~ 2

2χ  

 ( )t tp F Y=  ~ iid U(0,1)                                          (20) 
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⇒ ( )1
t th p−=Φ  ~ iid N(0,1).                                       (21) 

We now test th  for iid N(0,1). 

 

Model M6 

Following the same logic, for M6, we obtain  

 
1
1 ˆ( )t t t tZ C−

−= −κ κ                                              (22) 

 

which gives us two sets of standardised SV residuals (1)
tZ  and (2)

tZ  that are predicted 

to be iid N(0,1) and independent of each other. And, as with M2B and M3B, we 

obtain the corresponding standardised cohort-effect residuals that are also predicted to 

be iid N(0,1). It then follows that 

 
(1) 2 (2) 2[ ] [ ] [ ]t t t cY Z Z Z γ= + +  ~ 2

3χ  

⇒ ( )t tp F Y=  ~ iid U(0,1)                                         (23) 

⇒ ( )1
t th p−=Φ  ~ iid N(0,1).                                      (24) 

 

which we then test for iid N(0,1). 

 

Model M7 

M7 is similar but involves three sets of standardised SV residuals - (1)
tZ , (2)

tZ  and 

(3)
tZ  - rather than two. M7 also involves standardised cohort-effect residuals ( )

cZ γ .19 

Applying the same logic as before then gives us: 
(1) 2 (2) 2 (3) 2 ( ) 2[ ] [ ] [ ] [ ]t t t t cY Z Z Z Z= + + + γ  ~ 2

4χ  

⇒  ( )t tp F Y=  ~ iid U(0,1)                                     (25) 

⇒ ( )1
t th p−=Φ  ~ iid N(0,1)                                    (26) 

 

                                                 
19 Note however that ( )

cZ γ  now refers to the standardised residual of the (4)
cγ  process rather than that 

of the (3)
cγ .  The context makes it clear which gamma process ( )

cZ γ  is referring to. 
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where (.)F  is now the distribution function for a chi-squared with 4 degrees of 

freedom. As in earlier cases, we then test th  for iid N(0,1). 

 

4.3 Test Results 

 

We begin by reiterating that the hypothesis tests used to assess GOF in this section 

test whether the state variable residuals are (as appropriate) singly or jointly iid 

N(0,1). 

 

Model M1Table 2 presents the sample moments and the test results for M1’s 

standardised SV residual series, ( )2
tZ , and these results are compatible with the null 

hypothesis of standard normality. However, the null hypothesis of temporal 

independence is strongly rejected. Altogether, there are 4 p -values reported for M1, 

and, of these, one is significant at well under the 1% level. If we treat any p -values 

below 1% as a ‘fail’, then, by this criterion, M1 has a ‘failure’ rate of one test out of 

four or 25%.  
 
 

Table 2: Results for ( )2
tZ : Model M1 

Sample moments  
Mean -0.385 

Variance 1.070 
Skewness 0.060 
Kurtosis 2.625 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.082 
Test of variance ratio prediction 

P-value variance ratio test stat 0.740 
Test of normality prediction 

P-value Jarque-Bera test stat 0.925 
Test of temporal independence 

Pearson correlation (t+1,t) -0.570 
P-value correlation 0.001** 

 
Notes: Based on 24 annual observations spanning 1981-2004. All tests are two-sided except for the JB 
test which is inherently one-sided. If ρ  is the correlation coefficient, )1/(2 2ρρ −−N  is distributed 
under the null as a t-distribution with N-2 degrees of freedom. ** indicates significance at the 1% level.   
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Model M2B 

Figures 1 and 2 give the QQ plots20 for the model’s two standardised SV residual 

series, ( )2
tZ  and ( )

cZ γ , and Figure 3 gives a plot of empirical vs. predicted tp . We can 

see that all three Figures show extremely poor fits: the two QQ plots have one or more 

very extreme outliers (especially for the cohort effect plot in Figure 2) and do not lie 

close to the 45° line; the tp  plot in Figure 3 clearly does not lie anywhere close to its 

predicted 45° line either. There are therefore very clear problems with both this 

model’s standardised residuals series. 

 
Figure 1: QQ Plot for ( )2

tZ : Model M2B 
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Notes: Based on 24 annual ( )2

tZ  observations of model M2B over the period 1981-2004. 
 

                                                 
20 A QQ plot is a plot of the empirical quantiles of a distribution against their predicted counterparts, 
where the latter in this case are based on the prediction of standard normality. QQ plots give a useful 
visual indicator of whether the empirical quantiles are consistent with the predicted ones: under the 
null, we would expect the plots to lie fairly close to the 45° line. Note that we do not report the QQ and 
associated plots for models other than M2B, as these are all compatible with the underlying null 
hypotheses. The plots for M2B on the other hand are more informative. 
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Figure 2: QQ Plot for ( )
cZ γ : Model 
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Notes: Based on 24 annual ( )

cZ γ  observations of model M2B over the period 1981-2004. 
 
 

Figure 3: Plot of Empirical vs. Predicted tp : Model M2B 
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Note: Based on 24 annual tp  observations of model M2B.  ( )(1) 2 ( ) 2[ ] [ ]t t cp F Z Z= + γ , where (.)F  is 

the distribution function of a 2
2χ . 
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These impressions are confirmed by the results of Table 3, which presents the sample 

moments and the test results for each of ( )2
tZ  and ( )

cZ γ . Both perform poorly – both 

series score p-values of 0 for the variance and normality tests – and the sample 

moments of the ( )
cZ γ  bear no resemblance to the predictions. Similarly, the th  test 

results in Table 4 lead us to reject the null hypothesis that the standardised residuals 

are jointly iid N(0,1).  

 

Note that there are 12 p -values reported for M2B, and of these six are below 1%. If 

we again treat any p -values below 1% as ‘fails’, then, by this criterion, M2B has a 

‘failure’ rate of 50%.  

 

It is worth pausing for a moment to consider why M2B produces such poor results. If 

the model and fitting procedure were robust, then adding in one year’s data should 

only have a small impact on the estimated age, period and cohort effects. However, it 

was found with M2B – but not with any of the other models considered in this study – 

that adding one extra year of data could lead the model to jump from one set of fitted 

values for the cohort effect to a completely different set.21  This problem is most 

likely explained by the likelihood function having multiple maxima. The changes in 

parameter values then reflect a jump in the fitting algorithm from one maximum to 

another.22  

 

 

 

 

 

                                                 
21 These claims are borne out by graphs of fitted parameter values (not included here), which show 
considerable instability for M2B. By contrast, graphs of the fitted parameter values for other models 
are all stable. For further discussion of the stability problem, see Cairns et al. (2008). The authors of 
CMI WP 25 encountered similar problems. To quote from their study: “the fitted cohort parameters do 
not appear to be stable as the age range fitted is changed” (CMI, 2007, p. 18, para 7.18); “when back-
testing a dataset or fitting a different age range, we were unable to find a set of starting parameter 
values that consistently worked for different subsets of the data. Where a number of sets of starting 
parameter values worked for a particular dataset, we also found that the fitted values could differ 
materially” (CMI, 2007, p. 19, para 7.21). 
22 These jumps, in turn, lead to the fitted standardised residuals having some very extreme values as 
shown in Figures 1-3 and Tables 3-4.  
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Table 3: Results for ( )2
tZ  and ( )

cZ γ : Model M2B 
Sample moments  

  
( )2
tZ  ( )

cZ γ  
Mean -0.450 -7.558 

Variance 3.551 545.648 
Skewness -2.813 -3.262 
Kurtosis 13.910 13.801 

N 24 24 
Test of mean prediction1 

P-value mean t-test stat 0.254 0.127 
Test of variance ratio prediction 

P-value variance ratio test stat 0.000** 0.000** 
Test of normality prediction 

P-value Jarque-Bera test stat 0.000** 0.000** 
Test of temporal independence 2 

Pearson correlation (t+1,t) -0.132 -0.026 
P-value correlation 0.534 0.905 

 
Notes: As per Notes to Table 2.  
 

 

Table 4: Results for th : Model M2B 
Sample moments  

Mean 1.498 
Variance 5.447 
Skewness -0.433 
Kurtosis 1.466 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.005** 
Test of variance ratio prediction 

P-value variance ratio test stat 0.000** 
Test of normality prediction 

P-value Jarque-Bera test stat 0.212 
Test of temporal independence 

Pearson correlation (t+1,t) 0.167 
P-value correlation 0.429 

 
Notes: ( )1

t th p−=Φ , where ( )(2) 2 ( ) 2[ ] [ ]t t cp F Z Z= + γ , (.)F  is the 2
2χ  distribution function, and 

(.)Φ  is the standard normal distribution function. Note, however, that in 8 cases, the estimated value 

of th  was 1. Since the normal inverse of 1 is undefined, these values were reduced to 0.9999 for the 
purposes of computing the results in this Table. Otherwise as per Notes to Table 3. 
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Model M3B 

Table 5 presents the moments and test results for the standardised residuals for M3B. 

As with M2B, we have 12 reported p -values, but in this case only two are significant 

at the 1% level. M3B therefore has a ‘failure’ rate of 2/12ths or 16.7%. 

 

Table 5: Results for ( )2
tZ  and ( )

cZ γ : Model M3B 
Sample moments  

  
( )2
tZ  ( )

cZ γ  
Mean 0.094 -0.284 

Variance 0.872 1.948 
Skewness 0.312 -0.524 
Kurtosis 2.724 4.417 

N 24 24 
Test of mean prediction1 

P-value mean t-test stat 0.625 0.329 
Test of variance ratio prediction 

P-value variance ratio test stat 0.722 0.008** 
Test of normality prediction 

P-value Jarque-Bera test stat 0.793 0.212 
Test of temporal independence 2 

Pearson correlation (t+1,t) -0.620 0.010 
P-value correlation 0.000** 0.962 

 
Notes: As per Notes to Table 2. 

Table 6: Results for th : Model M3B 
Sample moments  

Mean 0.001 
Variance 1.886 
Skewness 0.820 
Kurtosis 4.053 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.998 
Test of variance ratio prediction 

P-value variance ratio test stat 0.012* 
Test of normality prediction 

P-value Jarque-Bera test stat 0.150 
Test of temporal independence 

Pearson correlation (t+1,t) 0.090 
P-value correlation 0.674 

 
Notes: As per Notes to Table 4. ( )1

t th p−=Φ , where ( )(2) 2 ( ) 2[ ] [ ]t t cp F Z Z= + γ , (.)F  is the 2
2χ  

distribution function, and (.)Φ  is the standard normal distribution function. * indicates significance at 
the 5% level. 
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Model M5 

Table 7 presents the sample moments and the test results for ( )1
tZ  and ( )2

tZ  based on 

M5, and Table 8 presents the sample moments and test results for M5’s th  series. M5 

has 13 p -values of which two are significant at the 1% level: M5 therefore has a 

‘failure rate’ equal to 2/13ths or 15.4%.  

 

 

Table 7: Results for ( )1
tZ  and ( )2

tZ : Model M5 
Sample moments  

  
( )1
tZ  ( )2

tZ  
Mean -0.342 0.663 

Variance 0.808 1.172 
Skewness 0.171 0.080 
Kurtosis 2.734 2.131 

N 24 24 
Test of mean prediction 

P-value mean t-test stat 0.075 0.006** 
Test of variance ratio prediction 

P-value variance ratio test stat 0.550 0.516 
Test of normality prediction 

P-value Jarque-Bera test stat 0.910 0.677 
Test of temporal independence  

Pearson correlation (t+1,t) -0.568 0.143 
P-value correlation 0.001** 0.499 

Correlation between ( )1
tZ  and ( )2

tZ 2 
Pearson correlation -0.029 
P-value correlation  0.892 

 
Notes: Based on 24 annual observations spanning 1981-2004. All tests are two-sided except for the JB 
test which is inherently one-sided. If ρ  is the correlation coefficient, )1/(2 2ρρ −−N  is distributed 
under the null as a t-distribution with N-2 degrees of freedom. ** indicates significance at the 1% level.  
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Table 8: Results for th : Model M5 
Sample moments  

Mean 0.103 
Variance 1.507 
Skewness -0.145 
Kurtosis 2.605 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.685 
Test of variance ratio prediction 

P-value variance ratio test stat 0.112 
Test of normality prediction 

P-value Jarque-Bera test stat 0.887 
Test of temporal independence 

Pearson correlation (t+1,t) 0.144 
P-value correlation 0.498 

 
Notes: As per Notes to Table 7. ( )1

t th p−=Φ , where ( )(1) 2 (2) 2[ ] [ ]t t tp F Z Z= + , (.)F  is the 2
2χ  

distribution function, and (.)Φ  is the standard normal distribution function. 
 

 

Model  M6 

Table 9 and 10 present the comparable results for M6. This model has 19 p -values of 

which three are significant at the 1% level: M6 therefore has a ‘failure rate’ equal to 

3/19ths or 15.8%.  

Table 9: Results for ( )1
tZ , ( )2

tZ  and ( )
cZ γ : Model M6 

Sample moments 
  ( )1

tZ  ( )2
tZ  ( )

cZ γ  
Mean -0.100 0.512 -0.570 

Variance 0.844 1.117 2.393 
Skewness 0.275 0.383 -0.554 
Kurtosis 2.893 2.305 6.037 

N 24 24 24 
Test of mean prediction1 

P-value mean t-test stat 0.599 0.026 0.084 
Test of variance ratio prediction 

P-value variance ratio test stat 0.645 0.632 0.000 
Test of normality prediction 

P-value Jarque-Bera test stat 0.855 0.586 0.005 
Test of temporal independence 2 

Pearson correlation (t+1,t) -0.557 -0.077 -0.109 
P-value correlation 0.001 0.721 0.609 
Correlation between ( )1

tZ  and ( )2
tZ  -0.1038  

P-value of correlation between ( )1
tZ  and ( )2

tZ  0.6271  

 
Notes: As per Notes to Table 2. 
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                                     Table 10: Results for th : Model M6 

Sample moments  
Mean 0.277 

Variance 1.289 
Skewness -0.312 
Kurtosis 1.806 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.243 
Test of variance ratio prediction 

P-value variance ratio test stat 0.320 
Test of normality prediction 

P-value Jarque-Bera test stat 0.404 
Test of temporal independence 

Pearson correlation (t+1,t) 0.016 
P-value correlation 0.940 

 
Notes: ( )1

t th p−=Φ , where ( )(1) 2 (2) 2 ( ) 2[ ] [ ] [ ]t t t cp F Z Z Z γ= + + , (.)F  is the 2
2χ  distribution function, and 

(.)Φ  is the standard normal distribution function. Note, however, that in 1 case, the estimated value of 

th  was 1, which was reduced to 0.9999 for the purposes of computing the results in this Table. 
Otherwise as per Notes to Table 9. 
 

 

Model  M7 

Table 11 and Table 12 present the corresponding results for M7. For this model we 

have 23 p -values, of which 3 are significant. Hence, M7 has a failure rate equal to 

3/23rds or 13.0%.   

 

Conclusions to Section 4 

The results of applying the state variable GOF tests to the six models are summarised 

in Table 13, which shows the proportions of test results for each model that are 

significant at the 1% level. It also shows the implied ranking by this criterion: M7 

comes a little ahead of M5, which in turn comes a little ahead of M6 and then M3B. 

M1 comes somewhat further behind and M2B comes well behind the rest.  
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Table 11: Results for ( )1
tZ , ( )2

tZ , ( )3
tZ  and ( )

cZ γ : Model M7 
Sample Moments 

 
( )1
tZ  ( )2

tZ  3( )
tZ  ( )

cZ γ  
Mean -0.321 0.345 0.116 0.029 

Variance 0.858 0.920 1.472 2.130 
Skewness 0.165 0.721 0.287 -0.789 
Kurtosis 2.701 2.857 2.340 6.985 

N 24 24 24 24 
Test of mean prediction 

P-value mean t-test stat 0.103 0.091 0.643 0.923 
Test of variance ratio prediction 

P-value variance ratio test stat 0.684 0.856 0.135 0.002** 
Test of normality prediction 

P-value Jarque-Bera test stat 0.905 0.350 0.682 0.000** 
Test of temporal independence  

Pearson correlation (t+1,t) -0.626 -0.079 0.083 -0.284 
P-value correlation 0.000** 0.712 0.699 0.162 

Correlations 

 
( )1
tZ  ( )2

tZ  3( )
tZ   

( )1
tZ  1    
( )2
tZ  -0.242 1   
3( )

tZ  0.145 -0.226 1  
P-values of correlations2 

 
( )1
tZ  ( )2

tZ  3( )
tZ   

( )1
tZ  1    
( )2
tZ  0.240 1   
3( )

tZ  0.492 0.275 1  
 

Notes: Based on 24 annual observations spanning 1981-2004. All tests are two-sided except for the JB 
test which is inherently one-sided. If ρ  is the correlation coefficient, )1/(2 2ρρ −−N  is distributed 
under the null as a t-distribution with N-2 degrees of freedom. ** indicates significance at the 1% level. 
 

 
 



 
 
 
 

 26

Table 12 Results for th : Model M7 
Sample moments  

Mean 0.357 
Variance 1.464 
Skewness 0.862 
Kurtosis 4.284 

N 24 
Test of mean prediction 

P-value mean t-test stat 0.161 
Test of variance ratio prediction 

P-value variance ratio test stat 0.140 
Test of normality prediction 

P-value Jarque-Bera test stat 0.099 
Test of temporal independence 

Pearson correlation (t+1,t) -0.012 
P-value correlation 0.956 

 
Notes: As per Notes to Table 11. ( )1

t th p−=Φ , where ( )(1) 2 (2) 2 (3) 2 ( ) 2[ ] [ ] [ ] [ ]t t t t cp F Z Z Z Z γ= + + + , (.)F  is the 
2
2χ  distribution function, and (.)Φ  is the standard normal distribution function.  

 
 

 

Table 13: Summary of Main Standardised Residual Results for the State 

Variables 
Model Proportion of test results 

significant at the 1% level 
Implied ranking 

M1 25% 5 
M2B 50% 6 
M3B 16.7% 4 
M5 15.4% 2 
M6 15.8% 3 
M7 13.0% 1 

Notes: Based on the results in Tables 2-12. 
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5. Assessing the Goodness of Fit of Model-based Annuity Price Residuals 

 

Our final test of the adequacy of the models is to test the goodness of fit of the prices 

(or fair values) of financial assets that depend on model-based mortality forecasts. To 

illustrate, we consider the case of a period term annuity for males aged 65, payable 

until age 90.23 We will assume the cashflows on the annuity are discounted using a 

fixed discount rate of 4%. We adopt procedures similar to those employed for testing 

the goodness of fit of the state variables. Take the first 20-year window covering 

1961-1980. For this period, each model is used to obtain estimates of the underlying 

state variables: )(i
xβ , )(i

tκ  and )(i
cγ . We then generate 1000 one-period ahead 

simulations of ( )i
tκ  and ( )i

cγ  (i.e., for 1981). For each simulation and each model, we 

generate model-based mortality rates, ( , )q t x , for ages between 65 and 90, and the 

corresponding period annuity prices, ( , )a t x .24 The 1000 simulated values give us an 

estimate of the one-period-ahead forecast distribution of ( , )a t x  for each model, and 

we use this to estimate the mean, ( , )a t x , and the corresponding standard deviation. 

We then use the crude mortality rates, ( , )q t x� , for 1981 to calculate the “crude” period 

annuity price, ( , )a t x� . The annuity residual for each model is then ( , )a t x� – ( , )a t x  and 

this is standardised by dividing by the standard deviation of the one-period-ahead 

forecast distribution of the period annuity price for that year. This procedure is 

repeated for the remaining 20-year windows covering 1962-1981, 1963-1982 etc. 

 

The sample moments and moment-based test statistics for the standardised annuity 

residuals are given in Table 14, and the main highlights are: 

● All models give fairly reasonable sample moments for the residuals. 

● M1, M3B, M5 and M6 each fail the iid test at the 1% significance level. 
                                                 
23 A period term annuity is one that has a fixed term and ignores future mortality improvements. That 
is, for valuation purposes the annuity’s future cash flows are calculated purely from the latest period 
mortality rates. We consider term annuities ceasing at age 90 because models M1, M2B and M3B, 
having been fitted to data from ages 60 to 89, predict mortality rates from ages 60 to 89 only. Their 
semi-parametric structure means that there is no natural way to use them to extrapolate mortality rates 
beyond age 89. 
24 Period annuity prices are calculated as follows. We define, first, the model-simulated period survival 
function { } { } { }( , , ) 1 ( , ) 1 ( , 1) 1 ( , 1)S t x y q t x q t x q t y= − × − + × × − −… . The simulated period annuity 

price is then defined as 90 ( )
1

( , ) ( , , )(1 ) y x
y x

a t x S t x y r − −
= +

= +∑  where 0.04r = . Crude period annuity 

prices, ( , )a t x� , are calculated in the same way, replacing ( , )q t x  by ( , )q t x� . 
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● M7 and M2B pass all tests at the 1% significance level.  

These results suggest that M7 and M2B rank more or less equally first, and the others 

come afterwards with little to choose between them.  

 

 

Table 14: Sample Moments and P-Values for Standardised Annuity Price 

Residuals 
 M1 M2B M3B M5 M6 M7 

Sample moments 
Mean -0.194 -0.022 0.335 0.346 0.140 -0.192 

Variance 0.463 0.872 0.803 0.782 0.788 1.305 
Skewness -0.382 0.163 -0.025 -0.163 -0.167 -0.026 
Kurtosis 2.995 4.085 2.835 2.949 3.015 3.393 

P-values of tests 
Mean test stat 0.176 0.909 0.080 0.068 0.446 0.420 
VR test stat 0.027* 0.723 0.536 0.483 0.499 0.298 
JB test stat 0.747 0.526 0.985 0.947 0.946 0.924 
Corr(t+1,t) -0.561 -0.381 -0.616 -0.548 -0.584 -0.028 

Corr(t+1,t) test stat 0.001** 0.048* 0.000** 0.001** 0.000** 0.896 
 

Notes: Based on males aged 65, payable until age 90, a discount rate of 4% and a sample size of 24. * 
indicates significance at the 5% level and ** indicates significance at the 1% level. See also notes to 
Table 1. 
 

 

6. Conclusions 

 

The present study sets out a framework for systematically evaluating the goodness of 

fit of stochastic mortality models, and applies it to a set of mortality models estimated 

using England & Wales male mortality data. If a model fits the data well, certain key 

residual series – those relating to mortality rates themselves, to the unobserved state 

variables that drive the dynamics of the model (including the cohort-effect where 

appropriate), and to the residuals of mortality-dependent financial prices – will, once 

standardised, be approximately iid N(0,1). We then test whether the relevant series are 

compatible with iid N(0,1). 

 

We find that none of the models considered in this paper performs well in all sets of 

tests, and no model performs consistently better than the others. For the particular data 

set used in this analysis, however, we find that: 
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● For GOF tests of mortality residuals, model M2B performs best, M7 comes 

second and M6 third, and M1, M3 and M5 come some way behind.  

● For the GOF tests of the state variables, M7, M5, M6 and M3B perform best, 

in that order, although there is not much to choose between them. M1 comes a 

little further behind. For its part, model M2B is well behind the others and also 

provides very poor fits of the mortality state variables. 

● For the GOF tests of the annuity price residuals, M7 and M2B emerge as the 

best models and the other models come some way behind. 

 

Two avenues for further work naturally suggest themselves. The first is to test these 

findings on other mortality data sets. A second is to evaluate the out-of-sample 

performance of the models’ forecasts, i.e., “backtest” the models, and this is addressed 

in Dowd et al. (2008b).25 

                                                 
25 A third avenue of research, which is much more ambitious, is to build a mortality model that is able 
to take account of the impact of exogenous factors (such as biomedical, environmental, and socio-
economic factors) on mortality rates. Wilmoth (1998), for example, applied the Lee-Carter model to 
cause-of-death data and this would also be an interesting extension to other models. 
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Appendix: Analysis of the ( , )t xε  Results 

 

Model M1 

This Appendix examines the ( , )t xε  results in more detail than was done in the text, 

and we start with the simplest model, M1. As a preliminary, Figure A1 shows a plot 

of ( , )t xε  for x  = 65, 75 and 85. Note that the plot should be consistent with an 

N(0,1) random variable under the null hypothesis. This plot shows rather more 

volatility than we would expect under the null hypothesis, and we get a number of 

notable outliers, most especially in the plot for 85-year olds for 2004.  

 

Figure A1: Plots of ( , )t xε : Model M1  
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Tables A1 and A2 present test results for the standardised mortality residuals, ),( xtε . 

Table A1 presents results organised year by year, and Table A2 presents results 

organised by age. They show that deviations from iid N(0,1) are significant for many 

of the test results. In particular, about 31.3% of test results are significant at the 1% 

level or below in the case of Table A1, and the corresponding percentage for Table 

A2 is 30.8%.  
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The most striking result is that the variances are above (and often well above) their 

predicted value of 1, which confirms the impression given in Figure 1. Further, the p-

values for the variance ratio (VR) test are always very low and almost always zero. 

These findings are consistent with those of Cairns et al. (2007). 

  

Tables A1 and A2 also reveal significant serial correlation between errors in the age 

and period dimensions. Under our null hypothesis, the ),( xtε  should be independent, 

so the high correlations here indicate that M1 is failing to model some significant 

structural dependence between ages and calendar years. 
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Table A1: ),( xtε  Results by Year: Model M1 
Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean 0.105 0.084 -0.152 -0.426 0.123 -0.125 -0.423 -0.148 0.206 -0.119 0.102 -0.089 
Variance 2.441 1.956 1.727 4.013 1.797 1.903 5.332 3.136 2.534 2.928 1.737 2.953 
Skewness 0.366 0.423 0.417 0.916 -0.199 0.691 0.492 0.620 0.515 0.521 0.664 0.492 
Kurtosis 2.786 2.564 2.381 3.349 2.054 3.630 2.792 2.178 2.078 2.804 2.316 2.939 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.736 0.762 0.561 0.288 0.644 0.649 0.359 0.674 0.515 0.726 0.696 0.794 
P-value VR test stat 0.000** 0.006** 0.027* 0.000** 0.017* 0.008* 0.000** 0.000** 0.000** 0.000** 0.025* 0.000** 
P-value JB test stat 0.730 0.612 0.557 0.152 0.566 0.287 0.578 0.302 0.355 0.544 0.298 0.590 
Corr (x+1,x)  0.425 0.363 0.628 0.754 0.340 0.300 0.758 0.399 0.423 0.138 0.163 0.129 
P-value corr 0.018* 0.052 0.000** 0.000** 0.071 0.120 0.000** 0.029* 0.019* 0.496 0.420 0.527 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean 0.187 -0.065 0.107 0.065 0.087 0.035 0.109 -0.071 0.011 -0.022 0.059 -0.174 
Variance 2.178 1.896 3.112 2.909 2.493 1.588 2.837 2.124 2.778 4.450 5.344 7.594 
Skewness -0.329 1.095 -0.590 -0.442 -0.332 -0.664 -0.605 -0.123 -0.409 -1.167 -1.255 -1.987 
Kurtosis 2.283 5.110 2.610 2.768 2.856 2.381 2.975 2.522 3.702 6.255 6.063 10.069 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.523 0.811 0.759 0.848 0.782 0.889 0.744 0.805 0.973 0.957 0.897 0.751 
P-value VR test stat 0.001** 0.009** 0.000** 0.000** 0.000** 0.063 0.000** 0.002** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.599 0.007** 0.433 0.637 0.778 0.313 0.452 0.855 0.533 0.000** 0.000** 0.000** 
Corr (x+1,x) 0.357 -0.275 0.561 0.398 0.588 0.676 0.356 0.437 0.218 0.304 0.004 0.058 
P-value corr 0.056 0.158 0.001** 0.029* 0.000** 0.000** 0.057 0.014* 0.273 0.114 0.983 0.778 

Notes: ),(/),(/)),(),(~(),( xtExtmxtmxtmxt −=ε  and each column refers to the ),( xtε  results for each given year. VR is the variance ratio test (Cochrane (1988), Lo and 

MacKinley (1988, 1989)). JB is the Jarque-Bera normality test (Jarque and Bera (1980)). The correlation test is based on the test statistic, )1/(2 2ρρ −−N , which is 
distributed under the null as a t-distribution with N-2 degrees of freedom.* indicates significance at 5% level and ** indicates significance at 1% level. 31.3% of test results 
are significant at the 1% level. 
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Table A2: ),( xtε  Results by Age: Model M1 
 

Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean 0.283 0.018 -0.179 0.050 -0.043 0.264 -0.042 -0.203 -0.124 -0.129 0.000 -0.070 -0.127 
Variance 4.661 3.626 3.496 2.778 2.598 3.747 2.636 2.651 1.895 2.780 2.848 2.521 2.251 
Skewness 0.098 -0.148 0.735 -0.109 0.440 1.056 -0.144 0.725 0.225 0.710 0.373 0.576 0.175 
Kurtosis 1.804 2.066 4.023 2.726 2.670 3.342 2.465 2.774 3.389 4.109 2.580 2.164 1.714 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.527 0.963 0.644 0.884 0.897 0.510 0.899 0.546 0.662 0.708 1.000 0.830 0.683 
P-value VR test stat 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.012* 0.000** 0.000** 0.000** 0.001** 
P-value JB test stat 0.480 0.619 0.201 0.941 0.644 0.102 0.831 0.340 0.838 0.197 0.694 0.363 0.411 
Corr (t+1,t) 0.745 0.650 0.480 0.635 0.225 0.490 0.239 0.226 -0.063 -0.093 0.135 0.302 0.391 
P-value corr 0.000** 0.000** 0.008** 0.000** 0.279 0.006** 0.247 0.276 0.771 0.665 0.524 0.134 0.042* 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean -0.436 -0.231 -0.166 -0.435 -0.331 0.059 -0.253 0.250 0.085 0.244 0.007 0.401 0.530 
Variance 2.393 2.202 2.512 2.195 3.090 3.803 3.863 4.388 6.932 1.839 1.617 1.777 2.075 
Skewness 0.314 -0.440 0.021 -0.145 0.169 -0.794 -1.564 -2.141 -2.799 -0.660 0.469 -0.025 -0.633 
Kurtosis 2.031 3.241 2.386 3.507 3.069 3.552 7.532 10.122 14.135 3.273 1.813 2.096 4.162 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.180 0.453 0.612 0.164 0.366 0.884 0.534 0.564 0.876 0.387 0.977 0.154 0.085 
P-value VR test stat 0.000** 0.002** 0.000** 0.002** 0.000** 0.000** 0.000** 0.000** 0.000** 0.017* 0.062 0.025* 0.004** 
P-value JB test stat 0.514 0.660 0.827 0.843 0.942 0.243 0.000** 0.000** 0.000** 0.403 0.318 0.664 0.228 
Corr (t+1,t) 0.611 0.578 0.407 0.325 0.316 0.227 -0.259 -0.010 -0.455 0.027 0.222 -0.224 -0.017 
P-value corr 0.000** 0.000** 0.032* 0.102 0.113 0.275 0.206 0.962 0.013* 0.899 0.285 0.282 0.935 
Notes: As per Notes to Table A1, except each column refers to the ),( xtε  results for each cohort of any given age. 30.8% of test results are significant at the 1% level. 
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Model M2B 

Figure 2 shows the corresponding plot for model M2B. The volatility in these plots is 

considerably lower than it was for Figure 1, but we get a couple of notable outliers for 

85 year olds.  

 
Figure A2: Plots of ( , )t xε : Model M2B  
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Tables A3 and A4 present test results for the standardised mortality residuals, ),( xtε , 

organised by year and age, respectively. These results are much better than for M1, 

with a much higher percentage of test results consistent with the null hypothesis that 

the residuals are iid N(0,1). In the case of Table A3, 8.3% of test results are 

significant at the 1% level, and, in the case of Table A4, the corresponding percentage 

is 7.7%. These percentages are higher than their predicted values of around 1%, but 

they are still much lower than those obtained for model M1.  It is also noteworthy that 

the ),( xtε  variances are much lower than their M1 counterparts and are closer to their 

predicted value of 1. Also, serial correlations between the ),( xtε  are generally lower 

than for M1. The fact that M2B seems to perform better than M1 might suggest that it 

is important to model the cohort effect in this dataset. 
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Table A3: ),( xtε  Results by Year: Model M2B 

Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean -0.028 0.010 0.038 0.011 -0.019 0.005 0.041 0.017 -0.153 -0.036 -0.092 -0.018 
Variance 0.808 0.696 0.802 0.630 1.732 0.714 1.057 0.722 2.329 0.840 0.952 0.520 
Skewness 0.002 -0.292 -0.093 -0.002 0.029 0.292 -0.271 -0.799 -0.072 0.127 0.633 -0.208 
Kurtosis 2.316 3.524 1.785 2.266 2.322 3.658 3.043 4.492 3.352 1.940 3.528 2.561 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.876 0.950 0.833 0.944 0.941 0.974 0.840 0.921 0.614 0.843 0.635 0.900 
P-value VR test stat 0.527 0.266 0.511 0.156 0.026 0.303 0.770 0.320 0.000** 0.615 0.937 0.047* 
P-value JB test stat 0.776 0.716 0.441 0.747 0.778 0.658 0.852 0.075 0.925 0.525 0.361 0.820 
Corr (x+1,x) -0.032 0.029 0.225 -0.161 0.451 0.054 0.030 0.001 0.665 0.295 0.201 0.164 
P-value corr 0.877 0.886 0.256 0.427 0.011* 0.793 0.886 0.996 0.000 0.127 0.316 0.416 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean 0.085 -0.080 -0.005 -0.030 -0.013 0.020 0.092 -0.076 -0.094 -0.043 -0.018 0.035 
Variance 0.407 1.037 0.978 0.668 1.028 0.288 0.687 1.509 1.965 0.978 0.856 0.846 
Skewness -0.554 -0.015 0.031 -0.454 -1.021 0.303 -0.561 -1.102 -0.983 -0.030 0.071 -0.635 
Kurtosis 3.522 3.243 2.653 2.612 6.144 3.704 2.358 6.093 7.231 4.319 3.335 4.957 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.505 0.692 0.978 0.853 0.949 0.848 0.577 0.755 0.735 0.827 0.921 0.849 
P-value VR test stat 0.008** 0.824 0.987 0.215 0.847 0.000** 0.249 0.098 0.005** 0.986 0.661 0.632 
P-value JB test stat 0.444 0.968 0.935 0.590 0.000** 0.627 0.404 0.000** 0.000** 0.389 0.931 0.052 
Corr (x+1,x) 0.161 -0.130 -0.063 -0.026 -0.077 0.231 0.079 -0.037 -0.010 -0.101 0.037 -0.049 
P-value corr 0.426 0.522 0.758 0.900 0.709 0.244 0.699 0.858 0.962 0.622 0.859 0.812 
Notes: As per Notes to Table A1. 8.3% of test results are significant at the 1% level. 
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Table A4: ),( xtε  Results by Age: Model M2B 
 

Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean 0.020 -0.147 -0.207 -0.200 0.178 0.299 0.319 -0.108 -0.078 0.086 0.110 0.003 0.019 
Variance 0.992 0.284 0.682 0.470 0.939 0.813 0.545 0.867 0.917 1.026 0.799 0.616 0.898 
Skewness -0.086 -0.289 0.143 0.170 -0.600 -0.890 -0.414 -0.412 -2.428 -0.699 0.233 -0.141 1.116 
Kurtosis 1.980 2.373 2.397 3.069 3.434 6.213 2.731 3.063 10.896 3.578 2.603 2.210 3.879 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.924 0.189 0.231 0.167 0.376 0.117 0.045* 0.576 0.693 0.682 0.554 0.983 0.922 
P-value VR test stat 0.943 0.001** 0.263 0.030* 0.911 0.563 0.077 0.709 0.848 0.854 0.525 0.157 0.795 
P-value JB test stat 0.585 0.695 0.801 0.941 0.443 0.001* 0.684 0.711 0.000** 0.318 0.829 0.703 0.056 
Corr (t+1,t) -0.167 -0.049 -0.069 -0.224 0.187 0.052 -0.015 -0.220 0.143 -0.044 -0.350 0.395 0.399 
P-value corr 0.429 0.820 0.749 0.280 0.373 0.808 0.945 0.291 0.500 0.838 0.075 0.039* 0.037* 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean -0.208 -0.108 0.130 -0.244 -0.118 -0.156 -0.205 0.173 0.323 0.032 -0.415 0.111 0.010 
Variance 0.776 1.259 0.653 0.642 1.405 2.191 1.244 1.125 1.177 0.885 1.019 1.096 0.890 
Skewness 0.091 -1.076 0.557 -0.543 -1.160 -1.207 0.176 -0.239 1.273 0.219 -0.078 0.471 -0.874 
Kurtosis 2.494 4.429 2.272 2.668 7.846 5.872 2.250 2.180 5.951 2.227 3.272 2.753 4.399 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.259 0.643 0.439 0.150 0.631 0.610 0.378 0.433 0.159 0.870 0.056 0.608 0.959 
P-value VR test stat 0.469 0.363 0.212 0.195 0.188 0.002** 0.388 0.613 0.506 0.760 0.872 0.680 0.774 
P-value JB test stat 0.865 0.036* 0.412 0.525 0.000** 0.001** 0.709 0.637 0.001** 0.674 0.952 0.622 0.082 
Corr (t+1,t) -0.074 0.174 0.308 0.044 0.047 0.060 0.104 0.147 -0.026 0.104 0.550 0.364 0.010 
P-value corr 0.729 0.409 0.124 0.838 0.827 0.779 0.628 0.489 0.906 0.627 0.001** 0.061 0.963 
Notes: As per Notes to Table A2. 14.2% of test results are significant at the 1% level. 
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Model M3B 

Figure A3 presents the rolling ( , )x tε  plots for model M3B. These are similar to, but 

somewhat worse than, those for M1. Tables A5 and A6 present test results for this 

model’s standardised mortality residuals, and these are very close to those for model 

M1, with 31.3% and 30.8% of results respectively showing significant deviations 

from iid N(0,1) at the 1% level.  

  

Figure A3: Plots of ( , )x tε : Model M3B  
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Table A5: ),( xtε  Results by Year: Model M3B 
Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean 0.085 0.029 -0.053 -0.130 -0.104 -0.124 -0.146 -0.090 0.004 -0.046 0.037 0.001 
Variance 1.212 0.956 1.016 2.412 2.178 2.216 2.846 1.968 2.921 1.453 2.440 1.212 
Skewness 0.219 -0.008 0.047 -0.009 -0.328 0.353 -0.604 0.127 -0.355 0.111 0.282 -0.643 
Kurtosis 2.196 3.308 2.623 2.513 2.445 2.841 2.464 2.525 2.696 2.864 2.666 2.930 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.698 0.880 0.791 0.673 0.722 0.676 0.663 0.745 0.990 0.847 0.904 0.995 
P-value VR test stat 0.427 0.949 0.882 0.000** 0.001** 0.001** 0.000** 0.005** 0.000** 0.134 0.000** 0.427 
P-value JB test stat 0.635 0.950 0.922 0.879 0.670 0.753 0.389 0.854 0.724 0.964 0.792 0.407 
Corr (x+1,x) 0.240 0.434 0.117 0.213 0.482 0.684 0.482 0.420 0.595 0.310 0.487 0.262 
P-value corr 0.223 0.015* 0.565 0.284 0.005** 0.000** 0.005** 0.020* 0.000** 0.106 0.005** 0.181 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean 0.074 0.041 0.045 0.072 0.066 0.078 0.088 0.059 0.036 0.009 0.003 0.039 
Variance 3.050 2.541 3.424 3.453 3.278 2.616 5.279 3.447 5.191 5.304 6.256 5.369 
Skewness -0.081 -0.431 0.274 -0.185 0.121 -0.094 -0.810 -0.679 0.206 -0.474 -0.528 -1.393 
Kurtosis 1.748 2.699 1.750 3.638 2.903 2.238 5.270 4.143 4.645 5.439 5.144 9.682 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.832 0.897 0.903 0.844 0.854 0.808 0.846 0.872 0.937 0.985 0.996 0.932 
P-value VR test stat 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.422 0.636 0.364 0.745 0.964 0.716 0.015* 0.182 0.210 0.025* 0.045* 0.000** 
Corr (x+1,x) 0.750 0.408 0.784 0.589 0.659 0.615 0.435 0.447 0.353 0.302 -0.084 -0.317 
P-value corr 0.000** 0.025* 0.000** 0.000** 0.000** 0.000** 0.015* 0.011* 0.060 0.117 0.681 0.098 
Notes: As per Notes to Table A1. 31.3% of test results are significant at the 1% level. 
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Table A6: ),( xtε  Results by Age: Model M3B 
 

Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean -0.575 -0.420 -0.250 -0.508 -0.603 -0.644 -0.500 -0.087 -0.756 -0.921 -0.817 -0.559 -0.639 
Variance 1.052 0.662 0.862 0.804 1.772 1.059 1.289 1.409 1.566 1.734 1.524 1.591 2.169 
Skewness -0.102 0.532 0.093 -1.237 -0.056 -0.562 -0.279 0.227 0.110 0.129 -0.061 0.174 1.221 
Kurtosis 2.541 2.431 3.265 4.802 3.695 3.461 2.225 2.685 2.724 1.590 2.416 2.775 3.925 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.011* 0.019* 0.200 0.011* 0.037* 0.005** 0.042** 0.723 0.007 0.002 0.004 0.041* 0.045* 
P-value VR test stat 0.787 0.227 0.696 0.540 0.025* 0.768 0.319 0.184 0.082 0.032* 0.103 0.072 0.002* 
P-value JB test stat 0.882 0.483 0.949 0.009** 0.780 0.478 0.633 0.858 0.940 0.358 0.837 0.918 0.033* 
Corr (t+1,t) 0.091 -0.060 -0.127 0.039 0.174 0.147 0.262 0.087 0.333 0.220 -0.037 0.613 0.788 
P-value corr 0.673 0.780 0.553 0.855 0.408 0.488 0.201 0.685 0.093 0.291 0.862 0.000** 0.000** 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean -0.085 -0.021 0.238 0.269 0.673 0.366 0.261 0.359 0.712 0.639 1.014 1.252 1.676 
Variance 2.955 1.877 1.822 3.565 2.407 3.472 4.957 6.692 6.989 2.773 3.619 4.568 2.820 
Skewness -0.528 -1.192 -0.675 -2.285 -2.487 -1.593 -1.390 -1.097 -1.532 -0.882 -0.452 -0.554 -0.125 
Kurtosis 3.989 4.618 3.349 11.108 11.909 7.911 6.446 5.518 8.029 3.941 2.468 2.743 2.224 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.811 0.941 0.396 0.492 0.044 0.346 0.571 0.503 0.200 0.073 0.016* 0.009** 0.000** 
P-value VR test stat 0.000** 0.013* 0.019* 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.351 0.016* 0.378 0.000** 0.000** 0.000** 0.000** 0.004** 0.000** 0.136 0.577 0.524 0.718 
Corr (t+1,t) 0.515 0.174 0.209 0.253 0.218 0.005 -0.191 0.135 0.073 0.486 0.744 0.560 0.545 
P-value corr 0.003** 0.409 0.315 0.218 0.295 0.980 0.364 0.526 0.734 0.007** 0.000** 0.001** 0.001** 
Notes: As per Notes to Table A2. 30.8% of test results are significant at the 1% level. 
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Model M5 

Figure A4 and Tables A7 and A8 give the corresponding plots and standardised 

residual results for M5. These are very similar to those for M1, with 32.3% and 33.7% 

of test results respectively being significant at the 1% level.  

 

Figure A4: Plots of ( , )t xε : Model M5 
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Table A7: ),( xtε  Results by Year: Model M5 

Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean -0.172 -0.164 -0.163 -0.195 -0.194 -0.181 -0.155 -0.111 -0.027 -0.082 -0.020 -0.069 
Variance 2.062 2.547 1.831 3.813 2.977 4.162 3.227 2.822 1.906 3.149 1.857 2.943 
Skewness -0.179 0.218 -0.387 -0.655 -0.432 -0.226 -0.069 -0.742 0.047 -0.799 0.788 0.026 
Kurtosis 2.469 2.096 2.602 2.738 3.697 2.592 1.935 3.277 3.963 3.546 5.040 2.503 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.546 0.605 0.545 0.615 0.572 0.654 0.664 0.738 0.922 0.817 0.941 0.840 
P-value VR test stat 0.003** 0.000** 0.014* 0.000** 0.000** 0.000** 0.000** 0.000** 0.008** 0.000** 0.011* 0.000** 
P-value JB test stat 0.801 0.579 0.663 0.380 0.513 0.818 0.535 0.291 0.602 0.213 0.027 0.874 
Corr (x+1,x) 0.622 0.582 0.540 0.338 0.506 0.411 0.433 0.272 0.028 -0.020 -0.258 0.048 
P-value corr 0.000** 0.000** 0.001** 0.074 0.003** 0.023* 0.015* 0.162 0.893 0.923 0.188 0.816 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean -0.025 -0.082 -0.094 -0.080 -0.079 -0.088 -0.074 -0.089 -0.058 -0.064 -0.005 0.011 
Variance 1.692 2.603 2.467 2.807 2.593 2.152 3.248 3.807 4.177 4.671 6.124 6.371 
Skewness -0.315 0.310 -0.597 0.201 0.074 0.542 -1.049 -0.212 -1.107 -2.217 -2.429 -2.617 
Kurtosis 3.562 3.361 2.129 1.790 3.451 2.570 4.926 4.920 6.545 11.096 12.692 12.897 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.924 0.798 0.762 0.810 0.806 0.763 0.836 0.818 0.887 0.882 0.992 0.982 
P-value VR test stat 0.033* 0.000** 0.000** 0.000** 0.000** 0.001** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.680 0.757 0.306 0.415 0.885 0.478 0.012* 0.123 0.000** 0.000** 0.000** 0.000** 
Corr (x+1,x) -0.005 -0.219 0.283 0.326 0.380 0.573 0.367 0.494 0.215 0.305 -0.281 -0.166 
P-value corr 0.980 0.270 0.145 0.087 0.040* 0.000** 0.048* 0.004** 0.281 0.113 0.148 0.411 
Notes: As per Notes to Table A1. 32.3% of test results are significant at the 1% level. 
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Table A8: ),( xtε  Results by Age: Model M5 
 

Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean -1.304 -0.985 -1.325 -0.385 -0.506 -0.265 0.066 0.103 0.656 0.898 1.285 0.865 1.070 
Variance 3.190 1.208 1.793 1.563 1.804 1.632 2.932 2.871 2.263 2.868 3.016 2.195 1.930 
Skewness 0.564 0.188 0.133 -0.440 -0.720 -0.409 -0.693 -0.444 -0.386 -0.534 -0.300 -1.218 0.025 
Kurtosis 2.686 3.302 3.050 2.909 4.489 3.000 4.438 2.207 3.827 3.423 3.381 4.583 3.737 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.002** 0.000** 0.000** 0.145 0.078 0.320 0.853 0.768 0.044 0.016 0.001 0.009 0.001 
P-value VR test stat 0.000** 0.448 0.022* 0.084 0.021* 0.057 0.000** 0.000** 0.001** 0.000** 0.000** 0.002** 0.009** 
P-value JB test stat 0.504 0.890 0.964 0.676 0.117 0.715 0.136 0.492 0.527 0.517 0.777 0.015** 0.761 
Corr (t+1,t) 0.383 0.430 0.077 0.078 0.095 0.093 0.001 0.050 -0.105 -0.104 -0.078 0.033 0.213 
P-value corr 0.047* 0.022* 0.718 0.715 0.657 0.665 0.996 0.817 0.623 0.628 0.715 0.877 0.307 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean 0.693 0.544 0.869 0.636 -0.258 0.007 -0.129 -0.236 -0.342 -0.419 -1.052 -1.313 -1.619 
Variance 1.543 1.164 1.591 2.872 2.048 2.832 4.238 5.685 6.257 1.325 1.949 2.202 1.704 
Skewness -0.574 -0.455 -0.327 -2.113 -2.182 -2.812 -2.921 -2.840 -2.347 0.531 -0.035 0.782 0.080 
Kurtosis 2.946 2.534 2.530 9.736 9.965 14.280 14.203 14.423 13.372 3.499 4.117 4.176 2.856 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.012* 0.021* 0.003** 0.079 0.385 0.984 0.762 0.633 0.510 0.088 0.001** 0.000** 0.000** 
P-value VR test stat 0.093 0.531 0.072 0.000** 0.004** 0.000** 0.000** 0.000** 0.000** 0.272 0.008** 0.002** 0.038* 
P-value JB test stat 0.517 0.593 0.722 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.502 0.535 0.147 0.977 
Corr (t+1,t) 0.337 0.052 0.206 0.169 0.322 0.103 -0.314 -0.042 -0.510 -0.336 0.474 0.193 0.672 
P-value corr 0.088 0.808 0.324 0.422 0.106 0.631 0.117 0.845 0.004** 0.090 0.009** 0.357 0.000** 
Notes: As per Notes to Table A2.  33.7% of test results are significant at the 1% level. 
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Model M6 

Figure A5 and Tables A9 and A10 give the corresponding plots and standardised 

residual results for M6. These are the best of the models considered so far, with 

15.6% and 18.3% of results significant at the 1% level.  

 

Figure A5: Plots of ( , )t xε : Model M6 
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Table A9: ),( xtε  Results by Year: Model M6 
Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean 0.097 0.055 0.004 -0.055 -0.087 -0.097 -0.089 -0.062 0.003 -0.044 0.031 -0.012 
Variance 1.558 1.281 1.091 1.523 1.436 1.848 1.548 1.561 0.925 1.496 0.998 0.657 
Skewness -0.606 0.136 0.105 0.314 -0.284 0.453 0.438 -0.676 0.118 -0.214 0.317 -0.882 
Kurtosis 3.022 2.723 2.179 1.893 3.386 3.003 2.246 3.546 3.563 2.645 3.561 4.795 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.695 0.807 0.984 0.823 0.714 0.718 0.719 0.802 0.986 0.855 0.876 0.942 
P-value VR test stat 0.075 0.315 0.684 0.091 0.146 0.012 0.079 0.073 0.858 0.106 0.931 0.196 
P-value JB test stat 0.451 0.922 0.678 0.416 0.775 0.641 0.485 0.316 0.817 0.846 0.678 0.032 
Corr (x+1,x) 0.530 0.390 0.216 -0.132 0.134 0.343 0.187 0.297 -0.009 0.111 -0.199 -0.313 
P-value corr 0.001** 0.034 0.279 0.515 0.510 0.069 0.352 0.124 0.964 0.588 0.319 0.102 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean 0.052 0.009 0.022 0.053 0.065 0.074 0.096 0.076 0.100 0.080 0.098 0.077 
Variance 0.912 1.476 1.098 1.791 1.573 1.498 3.754 2.999 3.630 4.264 5.528 5.349 
Skewness 0.253 -0.064 0.610 -1.579 -1.529 -0.766 -2.081 -2.122 -1.686 -2.289 -1.967 -1.596 
Kurtosis 2.172 2.953 2.453 8.475 7.316 4.017 9.568 9.939 10.821 11.585 9.949 10.017 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.783 0.972 0.917 0.841 0.795 0.760 0.802 0.825 0.792 0.844 0.833 0.867 
P-value VR test stat 0.821 0.118 0.667 0.018 0.068 0.105 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.601 0.990 0.380 0.000** 0.000** 0.160 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
Corr (x+1,x) 0.306 -0.093 0.330 0.141 0.193 0.238 0.267 0.262 0.125 0.141 -0.301 -0.293 
P-value corr 0.111 0.650 0.082 0.489 0.335 0.228 0.172 0.181 0.539 0.489 0.118 0.129 
Notes: As per Notes to Table A1. 15.6% of test results are significant at the 1% level. 
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Table A10: ),( xtε  Results by Age: Model M6 

 
Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean 0.460 0.466 -0.078 0.486 0.049 -0.009 0.005 -0.197 0.076 0.085 0.255 -0.289 -0.173 
Variance 0.975 0.769 1.199 1.237 1.057 0.900 0.867 1.198 0.888 1.424 1.435 1.087 1.720 
Skewness -0.297 -0.341 -0.620 -0.783 -0.106 -0.878 -0.437 -0.784 -0.493 0.446 -0.069 -0.018 1.296 
Kurtosis 2.823 2.758 2.329 2.776 3.275 3.939 2.793 4.454 3.117 2.030 2.432 3.074 4.366 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.032 0.016 0.730 0.043 0.817 0.962 0.980 0.388 0.698 0.731 0.308 0.188 0.524 
P-value VR test stat 0.990 0.451 0.464 0.398 0.774 0.801 0.710 0.467 0.768 0.171 0.162 0.700 0.034 
P-value JB test stat 0.825 0.770 0.370 0.286 0.941 0.138 0.668 0.102 0.610 0.420 0.843 0.997 0.014 
Corr (t+1,t) 0.076 0.311 0.301 0.273 0.298 0.332 -0.264 -0.069 0.036 0.213 -0.160 0.463 0.708 
P-value corr 0.723 0.120 0.134 0.180 0.139 0.094 0.197 0.750 0.866 0.308 0.448 0.011 0.000** 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean -0.484 -0.556 -0.090 -0.194 -0.876 -0.352 -0.146 0.121 0.318 0.598 0.326 0.398 0.392 
Variance 2.054 1.550 1.542 3.760 2.134 2.878 4.449 5.881 5.234 1.184 1.835 2.176 1.371 
Skewness -0.806 -1.254 -0.550 -1.852 -2.325 -2.594 -2.140 -1.845 -2.241 -0.675 0.012 0.164 0.688 
Kurtosis 4.993 5.028 3.331 9.033 11.454 13.435 10.402 10.076 12.235 2.978 3.196 3.335 4.273 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.111 0.039 0.726 0.630 0.007 0.320 0.737 0.808 0.502 0.013 0.250 0.199 0.114 
P-value VR test stat 0.004** 0.089 0.094 0.000** 0.002 0.000** 0.000** 0.000** 0.000** 0.493 0.017 0.002** 0.221 
P-value JB test stat 0.037 0.006** 0.517 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.402 0.981 0.896 0.173 
Corr (t+1,t) 0.275 -0.016 0.116 0.143 0.212 -0.127 -0.347 -0.088 -0.237 -0.039 0.475 0.308 0.554 
P-value corr 0.177 0.940 0.587 0.502 0.308 0.550 0.078 0.682 0.252 0.855 0.009** 0.125 0.001** 
Notes: As per Notes to Table A2. 18.3% of test results are significant at the 1% level. 
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Model M7 

Figure A6 gives M7’s ),( xtε  plots. These are fairly similar to those of M1. However, 

the ),( xtε  in Tables A11 and Table A12 are notably better: the percentages of test 

results that are significant at the 1% level (hence leading to the rejection of the iid 

N(0,1) null hypothesis) are a little under about half of what it was for M1, M3 and 

M5, and close in magnitude to those of M2B and M6.  

 

Figure A6: Plots of ( , )t xε : Model M7 
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Table A11: ),( xtε  Results by Year: Model M7 
Year = 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Mean 0.013 0.011 0.010 0.012 -0.031 0.019 0.007 -0.008 0.004 -0.018 -0.002 -0.001 
Variance 1.070 0.960 0.890 1.216 1.231 1.082 1.039 1.185 0.848 1.282 0.863 0.680 
Skewness -0.339 0.263 0.240 0.158 -0.160 0.275 -0.317 -1.032 0.523 -0.006 0.457 -1.001 
Kurtosis 2.990 3.135 2.347 2.313 2.377 3.151 3.563 4.801 3.620 2.075 3.782 4.764 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.950 0.953 0.956 0.957 0.887 0.926 0.973 0.971 0.981 0.936 0.993 0.997 
P-value VR test stat 0.738 0.962 0.759 0.420 0.393 0.707 0.817 0.476 0.637 0.314 0.680 0.237 
P-value JB test stat 0.780 0.853 0.700 0.733 0.767 0.838 0.677 0.017* 0.449 0.629 0.457 0.021* 
Corr (x+1,x) 0.315 0.227 0.049 -0.365 -0.035 -0.054 -0.217 0.064 -0.096 -0.005 -0.348 -0.280 
P-value corr 0.100 0.253 0.812 0.050 0.865 0.794 0.276 0.755 0.640 0.981 0.064 0.149 

 
Year = 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Mean -0.008 -0.016 -0.009 -0.019 -0.018 -0.014 -0.022 -0.013 -0.003 -0.027 -0.015 -0.015 
Variance 0.588 1.422 1.053 1.389 0.994 0.983 2.672 2.322 2.784 3.338 4.740 4.802 
Skewness 0.051 -0.037 0.810 -1.076 -1.047 -0.141 -1.891 -1.829 -1.826 -2.825 -2.220 -2.086 
Kurtosis 2.295 3.577 2.817 7.247 7.206 3.002 9.476 9.862 12.204 13.893 12.098 12.815 
N 26 26 26 26 26 26 26 26 26 26 26 26 
P-value mean test stat 0.956 0.946 0.964 0.934 0.927 0.944 0.947 0.966 0.993 0.940 0.973 0.973 
P-value VR test stat 0.103 0.158 0.781 0.187 0.941 0.974 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
P-value JB test stat 0.760 0.832 0.237 0.000** 0.000** 0.958 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 
Corr (x+1,x) -0.017 -0.137 0.288 -0.072 -0.256 -0.141 -0.060 0.022 -0.140 -0.039 -0.485 -0.472 
P-value corr 0.936 0.500 0.137 0.725 0.192 0.488 0.772 0.915 0.489 0.851 0.005** 0.007** 
Notes: As per Notes to Table A1. 16.7% of test results are significant at the 1% level. 
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Table A12: ),( xtε  Results by Age: Model M7 

 
Current age =  64 65 66 67 68 69 70 71 72 73 74 75 76 
Mean 0.187 0.182 -0.348 0.238 -0.161 -0.173 -0.100 -0.241 0.089 0.163 0.394 -0.091 0.077 
Variance 0.628 0.399 0.702 0.759 0.936 0.757 0.892 1.267 0.746 1.201 1.190 0.749 0.783 
Skewness 0.178 0.078 0.094 -0.820 0.387 -0.998 -0.204 -0.742 -0.391 0.782 0.087 -0.633 0.889 
Kurtosis 2.157 2.636 2.152 2.885 3.149 5.351 2.586 3.866 3.372 2.590 2.537 3.765 3.537 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.259 0.171 0.054 0.194 0.424 0.340 0.607 0.305 0.617 0.474 0.090 0.611 0.673 
P-value VR test stat 0.173 0.009** 0.302 0.427 0.903 0.423 0.778 0.352 0.398 0.460 0.480 0.403 0.486 
P-value JB test stat 0.658 0.925 0.686 0.259 0.733 0.009** 0.844 0.228 0.687 0.271 0.885 0.335 0.178 
Corr (t+1,t) -0.124 -0.034 -0.193 -0.120 0.140 0.223 -0.264 -0.060 -0.201 0.177 -0.288 0.111 0.383 
P-value corr 0.561 0.873 0.357 0.573 0.510 0.282 0.198 0.780 0.336 0.401 0.154 0.605 0.047** 

 
Current age =  77 78 79 80 81 82 83 84 85 86 87 88 89 
Mean -0.193 -0.238 0.231 0.102 -0.601 -0.124 0.007 0.177 0.257 0.402 -0.024 -0.113 -0.273 
Variance 1.245 1.284 1.306 2.812 1.973 2.911 4.402 5.633 4.963 1.106 1.016 1.120 0.572 
Skewness -1.474 -1.009 -0.242 -2.170 -1.912 -2.031 -1.845 -1.876 -2.616 -0.549 -0.038 0.252 -0.149 
Kurtosis 7.383 4.323 2.776 10.325 9.619 10.383 9.421 10.703 14.187 2.664 3.068 2.781 3.004 
N 24 24 24 24 24 24 24 24 24 24 24 24 24 
P-value mean test stat 0.405 0.314 0.332 0.769 0.047* 0.726 0.987 0.718 0.578 0.074 0.908 0.606 0.090 
P-value VR test stat 0.385 0.327 0.297 0.000** 0.007** 0.000** 0.000** 0.000** 0.000** 0.657 0.879 0.625 0.103 
P-value JB test stat 0.000** 0.055 0.867 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.517 0.995 0.860 0.956 
Corr (t+1,t) -0.105 -0.137 -0.165 -0.079 0.091 -0.134 -0.370 -0.145 -0.345 -0.185 0.126 -0.205 0.259 
P-value corr 0.622 0.520 0.435 0.714 0.670 0.530 0.056 0.494 0.080 0.379 0.554 0.327 0.206 
Notes: As per Notes to Table A2. 14.4% of test results are significant at the 1% level. 
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