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I'show that when an issuer hug superior information about the value of its assets, it is
better off’ selling assets separately rather than as a pool due to the information
destruction effect of pooling. If, however, the issuer can create » derivative security
that is collateralized by the assets, pooling ang “tranching™ may be optimal, If the
residual risk of each asset is not highly correlated, tranching allows the issuer to
exploit the risk diversification effect of pooling to create 4 low-risk and highly liquid
security. In contrast, for an uninformed seller, pure pooling reduces underpricing and
is preferred 1o separate usset sales, These results lead to 3 dynamic model of financial
intermediation: originators sel] pools of assets, some of which are purchased by
informed intermediaries who then further pool and tranche them. Pooling and
tranching allow intermediaries to leverage their capital more efficiently, enhancing
the returns to their private informatjon.

The repackaging of assets is ubiquitous in financial markets, For example,
mortgage-backed securities (MBSs) are created by pooling a large number
of individual home mortgages into a single financial trust, The trust is then
sold to investors by selling separate classes, or tranches, of securities
whose claims in aggregate represent a 100% interest in the trust, but
which are individually highly heterogeneous. This securitization process
has been applied to other assets, including car loans, credit card receiv-
ables, Western Union deposits, and commercial mortgages. A recent exam-
ple is the collaterulized bond obligation (CBO), created by pooling
different junk-bond issues. The pool is then tranched into an investment
grade “debt” security that ranks first in interest and principal payments,
and a residual “equity” sliver in which the default risk is concentrated,
Another innovation applies the concept recursively: the “kitchen-sink
bond” is formed by tranching a low-risk debt security from a pool of
residual pieces from other asset-backed securities. !
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These examples share the common feature of an issuer or financial
intermediary pooling assets and then reselling the pool as a collection of
new securities. With perfect capital markets, such repackaging would be
irrelevant. But this is at odds with the reality of the accelerated growth of
the asset-backed securities market and the substantial profits of the
intermediaries involved. The goal of this article is to develop a rational
equilibrium model of this process that is consistent with these and other
stylized facts.

To explain the gains from repackaging securities, three market imper-
fections seem important: transactions costs, market incompleteness, and
asymmetric information. This article focuses on asymmetric information.
This does not deny the presence and importance of transactions costs or
market incompleteness. Rather there are features of the market that scem
best explained by asymmetric information. For example, market incom-
pleteness cannot explain the construction of “pass-through” pools, which
do not augment the span of tradeable claims. It is also unlikely to explain
the CBO market, since good substitutes already exist for the debt and
equity tranches that are created. Transactions costs imply an advantage to
pooling but offer little help in rationalizing the pieces the pools are carved
into. As we shall see, the asymmetric information model offers useful and
consistent insights into these markets.

For some asset-backed securities, such as M BSs, many attributes of the
underlying assets are public information. But information asymmetries
still exist because the models used to price these securities are largely
proprietary, and the value estimates produced by one’s own mode! are
an important piece of private information. For example, Bernardo and
Cornell (1997) analyze MBS auctions and find that although all bidders
were sophisticated investors or investment banks, their bids are extremely
variable, with the winning bid exceeding the median bid by over 17% on
average. They conclude that this variability is due to asymmetric informa-
tion regarding valuation. Wallace (2001) provides additional evidence for
this interpretation and documents the degree of heterogeneity across
similar MBSs.

A goal of this article is to demonstrate the role of asset securitization in
a model of informed financial intermediation. Consider a sophisticated
financial intermediary that has superior ability in valuing assets. Based on
this ability, the financial intermediary can profit by buying underpriced
assets and holding them to maturity. However, to leverage its available
capital fully, the intermediary would prefer to resell the assets (at their true
value) and reinvest the proceeds (in newly identified underpriced assets).
But given its superior information, the intermediary faces a “lemons”
problem when it attempts to resell the assets, resulting in illiquidity: the
price the intermediary receives for the assets is decreasin g in the quantity
sold. By pooling the assets and issuing a high quality (and information
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insensitive) security tranche backed by the pool. the intermediary can
mitigate the lemons problem and maximize its return on capital,

To build this model of financial intermediation, I begin by examining
the consequences of pooling assets for an informed issuer. The analysis
builds on the security design model of DeMarzo and Duffie (1999)
{henceforth “D&D") and the signaling model of Leland and Pyle (1977).
These articles develop models in which the seller signals a high value
security by its willingness to retain a portion of the issue. In Section 3, I
show that pooling of assets prior to sale is not advantageous to an infor-
med issuer. Pooling assets destroys the asset-specific information held by
the issuer, eliminating its option regarding how aggressively to sell each
asset. This information destruction effect reduces the issuer’s payoff.

In Section 4, 1 consider the effect of pooling and tranching. Building on
results from D&D and DeMarzo (2003b), I show that there is a beneficial
risk diversification effect of pooling, allowing the issuance of a low-risk
debt security from a large pool. This low-risk debt is less sensitive to the
issuer’s private information, and hence is more liquid. T show that as
the size of the pool grows large, the risk diversification effect dominates
the information destruction effect, so that pooling and tranching is opti-
mal for an informed issuer.

Having analyzed the case of an informed issuer, in Section 5 I consider
the problem faced by an uninformed issuer when some buyers are poten-
tially informed. For example, many assets are created by “originators”
who specialize in marketing and other customer services. These assets may
then be sold to uninformed investors or acquired by an intermediary who
is more sophisticated and more informed about asset values. Because
uninformed investors face an adverse selection problem — the informed
intermediary buys those assets it knows to be of high quality — originators
are forced to underprice assets, as in Rock’s (1986) model of IPO under-
pricing. Here I show that an uninformed issuer does have an incentive to
pool the assets even if they are not tranched prior to sale. Pooling prevents
the informed investors from selectively purchasing just the highest quality
components of the pool, reducing the adverse selection problem facing
uninformed investors.

While useful on their own, combining these results leads to a model of
informed intermediation, developed in Section 6. Uninformed originators
pool assets to reduce underpricing. Informed intermediaries purchase the
highest quality pools from originators. Then, to raise capital for future
purchases, intermediaries further pool the asset pools and issue low-
information-sensitive security tranches backed by these large pools. The
ability to repackage securities enhances the returns to information.

This stylized model fits well the market for many asset-backed securi-
ties. For example, mortgage originators generally pool the mortgages.they
originate into a pass-through MBS consisting of 20-30 mortgages. Since
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1995, over 50% of all mortgages that originated in the United States have
ultimately been pooled in this fashion.? These pass-throughs are sold to
intermediaries who then combine 100-300 of these MBS pools into a real
estate mortgage investment conduit (REMIC). The intermediaries issue
sceurities backed by the REMIC known as collateralized mortgage obli-
gations (CMOs). The most liquid of these CMOs are generally designed to
be relatively insensitive to the rate of mortgage prepayment, consistent
with the notion that the intermediaries themselves are likely to be best able
10 evaluate and price prepayment risk.® Consistent with the model, while
intermediaries sell off many of these CMOs, they also retain significant
fractions for their own portfolios [see Wallace (2001) for a detailed
analysis of this market and its participants].

Related Literature

Leland and Pyle (1977) develop a signaling model of liquidity in which a
risk-averse entrepreneur can diversify by selling an equity stake in his firm.
In equilibrium, the entrepreneur signals his private information about
firm value by retaining equity, and the market’s demand curve for equity
is (rationally) downward sloping. Leland and Pyle conjecture that signal-
ing costs might be reduced by combining many projects, leading to spe-
cialization in information production. Rather than risk aversion, the
motive for trade in this article is that the issuer has an above market
discount rate due to the availability of other positive net present value
(NPV) investments. By similar reasoning, an owner signals an asset’s high
quality by retaining some of it. In either case, however, the Leland and
Pyle conjecture fails in that simply pooling assets will not reduce asym-
metric information costs and enhance liquidity.*

Diamond (1984) analyzes financial intermediation based on an ex post
asymmetry of information — investors do not observe firms’ cash flows.
To ensure repayment, investors can undertake costly monitoring of the
firm. With multiple investors, monitoring entails duplicative effort that
can be avoided by delegating monitoring to a financial intermediary.
Moreover, as the intermediary grows large (by pooling independent secu-
rities), the intermediary can offer investors a nearly risk-free debt contract.
Similarly, Diamond (1993) and Winton (1995) argue that the issuance of

* Data from The Bond Market Association (www.bondmarkets.com),

’Prepaymem risk is the most important risk for MBSs. Credit risk is not an issue due to the guarantees
lyplce}l_ly provi@ed by various agencies (Fannie Mue, Freddie Mac, Ginnie Mae). For other asset-backed
securities, credit risk is generally quite important. Consistent with the model, for these asset-backed
securities, pools are generally tranched into prioritized securities, with the most senior securities being
relatively insensitive to information regarding credit quality.

T . .
While this article focuses on a risk-neutral igsuer, I extend the model to the

) ; case of a risk-averse issuer in
the working paper version [DeMarzo (2003a)].
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difterent classes of securities, varying in seniority, can reduce monitoring
costs. Like these analyses, I derive debt as an optimal contract for a large
intermediary. On the other hand, [ focus on an ex ante information
asymmetry in which sophisticated investors become intermediaries
because they have superior information about asset values, This type of
information is probably more relevant for many asset-backed securities.
For example, monitoring the cash flows of CMOs is not typically a
problem, whereas there is general agreement that the major investment
banks have a superior ability to value them.’

The Gorton and Pennachi (1990) model of intermediation features two
investor clienteles, informed and uninformed. Informed investors exploit
the uninformed investors when the uninformed are in need of liquidity. In
their model, it is optimal for the uninformed to form an intermediary that
splits cash flows into riskless debt and equity. The uninformed can then
trade the debt claims to satisfy their liquidity needs, avoiding losses from
trading with the informed. In contrast with our model, the intermediary in
the Gorton and Pennachi model is uninformed.

Winton (2001) considers a model in which an intermediary (a bank) has
an incentive to monitor and acquire information about the underlying
assets (a firm) in order to reduce agency costs. The intermediary may
suffer a liquidity shock, however, and be forced to issue claims backed by
its holdings. Similar to D&D, he shows that as an informed seller, the
intermediary’s liquidity costs are reduced if it holds debt rather than
equity. Winton does not consider the possibility of pooling and tranching
the securities of multiple firms.®

The Glaeser and Kallal (1997) model of asset-backed securities incor-
porates an issuer’s choice of whether to gather information. They note
that pooling assets has ambiguous effects on an issuer’s incentives to
become informed and therefore on the liquidity of the pool. The model
here extends their analysis by allowing the issue of derivative tranches in
addition to simple pass-through securities, which I demonstrate to be
critical. Riddiough (1997) also examines security design for asset-backed
securities. He notes that splitting off a riskless security is beneficial since
the issuer will suffer no asymmetric information losses on that security.
The analysis here is more general and does not require that the security
tranche be riskless. Riddiough focuses on the agency and governance
issues that arise in this setting, issues not addressed here.

Subrahmanyam (1991) and Gorton and Pennachi (1993) explore how
pooling equity securities can reduce adverse selection when uninformed

5 Ex post monitoring may be a more important issue for collateralized loan obligations.

®In fact, the pooling and tranching of bank loans into collateralized loan obligations is a rapidly growing
class of asset-backed securities.
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dausdity traders trade with informed traders. Axelson (1999) explores this
; il auction vontext In which buyers have differential information,
12 that as the number of ussets grows large, auction revenues can be
»od by powling ussets prior to sale. His analysis corresponds most
wele tathut of Section 3. where [ also demonstrate that pooling reduces
the wdserse selection problem.

2. The Underlving Assets

3 3 xinmm zi_z; prnh!cm faced by an issuer who holds n assets, but prefers to
hold L‘;nh This issuer must choose whether to sell the assets separately, as
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zero — whatever the quality of other loans, it remains possible that
loan j is bad.”

Each asset is perfectly divisible. Owning a fraction ¢, € [0, 1] of asset §
entitles the owner to the cash flows ¢;Y;. In the various applications in the
rest of this article, I investigate the relationship between the market price
for the assets and the fraction sold by the issuer when there is illiquidity
resulting from asymmetric information.

Finally, assume there exists a large number of risk neutral investors. For
convenience, also assume that the market interest rate is zero. Hence, in
the absence of asymmetric information (i.e., if X were public). each asset
could be sold for a market price of X

Pooling and Information Destruction

In this section 1 consider an informed issuer who sells assets either
individually or as a pool. I show that the issuer’s payoff exhibits a
natural convexity resulting from the issuer’s option to choose the
quantity of each asset to sell based on its private information, Pooling
destroys this option and raises the costs the issuer must bear to signal
the quality of the assets. This information destruction effect implies
that it is not optimal for the issuer to sell the assets as a single pool.
Rather, the issuer’s payoff is highest if each asset is sold individually to
the market.

I model a risk-neutral issuer who discounts future cash flows at a higher
rate than other investors.® Thus, the issuer would prefer to sell the assets
for cash. This corresponds to the model of D&D and can be motivated by
supposing that the issuer has access to other investment opportunities
with an above market return. In particular, if the issuer earns a profit
buying and selling assets, the issuer may wish to raise cash to fund new
asset purchases. In Section 6, 1 model this process and endogenously
determine this preference for cash.

Thus, suppose the issuer is risk neutral and has a discount factor 8 < 1,
and suppose the issuer sells a fraction ¢ of the entire pool of assets to
investors at a market price for the pool of p. Then the payoff to the issuer

is given by
EB(1—q)Y" +qplX] = 8X" +¢(p —8X").

does not imply strictly positive cash flows Y, but only requires that the security

value even given the worst-case information.
in Leland and Pyle (1977). The intuitions of this
he working paper version of this article [DeMarzo

7 The positivity of xi
retains some positive “option”

% An alternative motive for trade is risk-sharing, as
model are robust to that setting as well, as 1 show in t
(2003a)].
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If the issuer anticipates a market demand schedule given by p(y) for the
pool, then given X" = v the issuer will issue quantity O"(x) that solves

max 8x + ¢(P(g) —8x) = 8x + max ¢(P(g) — dx). (1)
4 iq

That is. the total payoff to the issuer is the issuer’s discounted value of the
asset plus any “profit” from the sale of the security. The issuer chooses d
quantity to sell to maximize this profit, which we denote by
M7 (x) = max g{P(g) —bx). (2)
T gelo)

The following key properties follow immediately from the definition
of IT%:

- . , . R L - 9
Lennma 1. For any demand function P, the issuer’s profit 117 is decreasing
and convex in x. Also, the fraction Q(x) that the issuer sells is decreasing
inx.

Proof. For fixed g, the issuer’s objective is decreasing and linear in x with
slope —¢8. Hence TI” is the upper envelope of linear functions and is
therefore convex. The fact that g is decreasing follows from the convexity
of IT” and the fact that it has —g8 as a subgradient. 7}

The properties described in Lemma | are clearly robust and will drive
much of the subsequent analysis. However, it is useful to describe an
equilibrium in which investors’ demand is not arbitrary, but is based on
their perceived value of the pool given the issuer’s decision. In a standard
rut%ofiml expectations or Bayes-Nash equilibrium, investors® demand
satisties

PIO"(X")) = E[X"|Q"(x")]. (3)

Note that from Lemma 1, for any such equilibrium the demand schedule P
is (weakly) downward sloping in the range of 0. We say that the equilib-

rium is separating if P(Q(X"))= X". The following characterization of the
equilibrium is from D&D:!"

Lemma 2. Given the worst-case asset value x,>0, there is e unigue
separating equilibrium, given by Q*(x) = (,\f/xo)ﬁl'ﬁ and P*(q) = xoq°"".
The e’ljllililri‘ilfgrl payoff function TI°(x) = w{xixg)xy. where m(x/xy) =
(1= 8)(x/xq)T. '

“ Here and throu 3 ingfi i
ghout 1 use the term decreasing/inereasing in the weak sense (as eC 1
nd il ] s 18 oppose siric
decreasing/increasing). ! ’ (45 opposed o sricily
W A with all < anal . .
Q;lﬁilll)h‘ all :grndflm% moldeis, Iguluplc equilibria are possible in the absence of restrictions on out-of-
Tium behiets. For the model considered here, this equilibrium is i ilibri isfyi
A ; , this s the unique equilibri sutis
standard refinements {see D&D). 4 4 uilibrivm satisfying
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Proof. See D&D. The solution follows from difterentiation of Equations
(2) and (3) and the boundary condition Q" (x) = 1. B

Note that the issuer’s quantity choice depends upon the rativ of the
assel value to its worst-case value x/xp.'' Thus the issuer’s equilibrium
payoff is homogeneous of degree | in x and x;,. While having an explicit
functional form for 7 is convenient, recall that Lemma | implies that 7 is
decreasing and convex without further calculation.

Next, suppose the issuer sells the assets separately. Consider the sale of
asset i. Essentially, the issuer faces the same problem as in Equation (2)
above with X; in place of X". The investors are also in an analogous
position, with the possible exception that they may have learned informa-
tion about X; from the prior sale of asset j7# i that might alter their
conditional distribution for X;. However, the equilibrium depends only
on the worst-case outcome of the expected asset payoff and not on the
distribution itself. By our initial assumptions, the worst case is not affected
by X_,. Hence the equilibrium is unchanged. This leads to the following: '

Lemma 3. If the issuer sells assets separately, there is a unigue separating
equilibrium in which the issuer’s total payoff is given by S X Xy

Thus, the issuer’s payoff from a separate or a pooled sale ol the assets can
be compared, yielding the main result of this section:

Theovem 1. The issuer prefers a separate sale of the assets to a pooled sale:

that is,
n
X X"
o (——') x> T <~7> xp.
y X
=1 \Xio 0
where the inequality is strict if’ Xilxio is not equal for all i.
Proof. By the convexity of m, and the fact that xft = 3=, x. we have
n " . n
Xi X; Xio X; X
Z—'SW("L) D W(”T)
= X0\ =7 Yo Yo Xy
The strict inequality follows from the fact that Q" is strictly decreasing so
that 7 is strictly convex. ]

Theorem 1 demonstrates that an informed seller will prefer to sell‘
securities individually rather than as a single pass-through pool of

1 A in all separating equilibria, the equilibrium is sensitive to the sUpport d4ssumpuon. Y. and otherwise
insensitive to the distribution of X, which may scem unnatural. 4ln :Scct}\wn 6 ut’ the articke, | show. ina
dynamie setting, how xg arises endogenously based on the full distribution of X.

12 §ee appendix for prools not in the text.
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securities. Intuitively, because the issuer holds an option regarding the
guantity of the asset 10 sell, the issuer’s payolf is convex in the privut'ely
observed quality of the asset. Therefore, the issuer prefers not to combine
high and low quality assets to create a medium quality pool. I refer to this
loss as the information destruction effect of pooling.

The information destruction effect follows from the convexity of 7 and
not its explicit functional form. Thus, the result is more general than the
explicit setting considered here. For example, it extends to the Leland and
Pvle (1977) model, in which the issuer is risk-averse (see DeMarzo
(2003a)).

Theorem | relies on the assumption that xj = 3", x0; that is, the worst
possible pool is equal to a pool of the worst possible assets, There may be
cases for which this does not hold. For example, investors may have data
regarding characteristics of the pool that improves the worst-case sce-
nirio, so that x>~ xp. In this case there may be benefits associated
with pooling even for an informed issuer."

. Tranching and Risk Diversification

In the previous section, the issuer could either issue the assets separately or
as a pool, and pure pooling was shown to be suboptimal. In this section, I
allow the issuer to create a derivative security based on the cash flows of
the underlying asset or pool of assets. I then show that pooling the assets
and selling a derivative tranche is superior to both pure pooling and
separate asset sales.

Consider an issuer with assets with payoff ¥=X -+ Z. Rather than sell
shares in asset / directly, the issuer may create a security or tranche that
pays F(Y;) for some measurable function F. Restricting atlention to
limited-liability securities that are backed solely by the underlying assets
implies F{y) € [0, y]. Such a security Fis referred to as an “asset-backed
security.” For tractability, I consider only nondecreasing functions F.'*
Since the goal is to show that pooling and tranching is superior to both
individual sales and pure pooling, restricting attention to monotone
tranches only strengthens the result.

Given risk neutrality, with pure pooling the remaining risk Z plays no
role. However, the creation of nonlinear securities Fimplies that Z plays a
critical role —the risk inherent in Z will determine the extent to which a
security can be designed that minimizes the asymmetric information
between the issuer and investors. I show that the risk diversification effect

T . S . . .
l"or example, 1f. a eredit card issuer has better information only regarding the identiry of bad accounts,
rather than their number, then poaling all accounts can improve the worst-case scenario.

This restriction is (or tractability. Since the goal is to show that pooling

st and tranching is superior
individual sales and pure pooling, ; ) . D e ot

restricting attention to monotone tranches only strengthens the result.
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of pooling is beneficial in this regard. In fact, it can overcome the infor-
mation destruction effect, so that pooling and tranching is optimal for the
issuer,

At the time of issue, X is private information of the issuer. But because
there are usually significant delays between the design ol a security and its
sale, X may or may not be known at the time that the security design £'is
chosen. Therefore, [ consider below both ex ante and ex post security
design, and show that they lead to similar conclusions.

4.1 Ex ante security design

Suppose that the security design F is chosen prior to the realization of the
information X. In this case, the issuer’s choice of £ does not reveal any
information. This timing is relevant in several applications. First, asset-
backed security designs may be standardized, and thus not reflective of
private information relating to a particular issue. Second, there are often
significant delays between the design of the security and its sale. If private
information is acquired continuously, significant information may be
learned during this delay.'® Third, the informed issuer may be un under-
writer who did not directly control the design.

To simplify notation, suppose for the moment that there is a single asset
(n= 1) with payoff Y. Given a security design F and private information
X, let the expected payoff of the security be given by f= E[F(¥)|X].
Suppose the issuer sells a fraction ¢ of the security £ for a price p. Then
the issuer holds gp in cash, and assets with discounted value 8(Y — ¢£{Y)).
The issuer’s expected payoff is therefore

E8(Y —qF(Y))+qp| X] =8X +4q(p—3f).

. . 1.'
Suppose the issuer anticipates a market demand schedule given by P (g)
for the security F. Then given the conditional value f of the security, the
issuer solves

I17(/) = max g(P"(¢) =8/ ).

The structure of this problem is identical to Equation (2) of Section 3, and
so we have the following characterization (see D&D):

Lemma 4. Let [fo, f1] be the support of f= EN[.F.( )X leer‘e is « un{'qu‘c
separating equilibrium with equilibrium payoff function () = w(ffo)o,
where 1 is defined in Lemma 2.

15 For example, if the issuer’s information is the output of a proprietary vu_luuti(m model, it is the model's
valuation on the day of sale (based on the current yield curve, ete.) that is relevant.




The Besien of Fonaneial Studivs v 18 o 1 2003

This result gives the issuer’s profit given a security design /” and a
conditional value of /= E[F(V)|X]. Because X is not known at the time
F'is chosen, the issuer's ex ante expected profit given Fis £[m(//fo)fol.
Henge, the ex ante security design problem is the following:

G1¥] = max E[n(//folfo] (4)

Before proceeding, note the following properties of the ex ante payoff
function G:'®

Lemma 5. G is homogeneous of degree 1; that is, GlaY]=aG[Y] Also,
GIY <L —8)x, and the inequality is strict if X and Z are independent and
continvously disiributed.

The upper bound in Lemma 5 states that the issuer can at best recover the
“retention cost” (1 —8) on the worst-case value xy. If a security design
provided a higher payoff, it would be imitated by the worst type.

From Equation (4), the issuer must trade off, makin g the worst-case
payoff fy of the security as high as possible, while at the same time
minimizing its information sensitivity f/f, (since 7 is decreasing). While
the set of possible security designs is vast, D&D show that for standard
distributions, the trade-off is best accomplished with a standard debt

contract, which pays the lowest, most information insensitive, cash
flows first.

Lemma 6. Suppose Z is independent of X and has a log-concave'” density
Junction. Then the optimal monotone security design is a standard debt
contract. That is, F*(Y)=min(d,Y) for some constant d.

Pr(‘m_ﬁ Given the additive separable construction of Y, the assumption on
Z implies that the conditional distribution of ¥ given X satisfies the
monotone likelihood ratio property (MLRP). This is stronger than
the “uniform worst-case” condition of D&D. They demonstrate that this

con-dition implies standard debt is the optimal monotone security
design. 1]

Thus it is sufficient to consider standard debt contracts, replacing

Equation (4) with

GLY] = max Ela(f*/f5)f),

where ¢

iy debt.= Emin(d,Y)|X]. Let D*[Y] represent the optimal face value of

| ,
© Note that G operates on the random v

ariable ¥, not its outcome, a
use square bruckets, [+, to denote su h

> nalogous to an expectation opera

ch operations. pect perator1

N : ; f
The density function g is lo
stundard distributions, suct
truncated).

g-concave if log(gls)) is concave in &, This

‘ A property is satisfied b H
h as uniform, normal (possibly truncated tnd sossibly

), and exponential (possibly
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Now consider whether an issuer with multiple assets (72 1) 1s better oft
selling a single debt security backed by the pooled assets. versus selling
separate debt securities cach backed by a single asset.'™ The comparison
requires knowledge of how the asset risks are related. For simplicity. |
assume a one-fuctor structure for the residual risk:

Assumption 1. Z;= g;+n, where the idiosyncratic risk &, is independent of
(e_pnm X)) and the common risk n is independent of (. X). Also. g, wid 1
have log-concave density functions.

Under this assumption, for a pool of size n. 2" = (3, &) + n. Since log-
concavity is preserved by convolution [Prékopa (1973)]. the conditions of
Lemma 6 are satistied. Hence, if the assets are pooled. the issuer's exunte
expected payoff is given by

L

i=1

If instead the issuer does not pool the assets, they can be sold individually.
Rather than selling each asset outright, however. the issuer can construct i
new security for each asset / which is backed by that asset. By an argument
identical to that in the proof of Lemma 3, this problem is separuble across
assets, and the aggregate ex ante profits to the issuer from separate sales 1s
given by

S aGIv (&)
j=1

Therefore, the decision to pool or not amounts to i compatrison of
Equations (5) and (6). Using the homogeneity of G. the issuer prclers‘}o
pool the assets prior to tranching if it leads to a higher per-asset payoftf:

n

H
G|y vl =1y Gl

=1 IEY

Next I show the key result of this section: If the residual risl_\' of the
assets is diversifiable, then for large enough n, it is optimal for the issuer to
pool the assets prior to tranching them. Tq state Lhif reSL.lll. we 'hr.st
suppose that the per-asset worst-case payoff is well defined in the 'hmn;
lim,,— %Z, Xj = X, and that the asset payofts are .nondegencrate .m .{‘hL
sense of Lemma 5 so that there is some loss relative to the theoretical

18 We could compare the payoff from pooling and tranching versus the payolt I'rqm simply selling ll'ml usschls.

inedivi TQ e T > T y 3

individually. Since issuing debt against an individual asset is superior to selling the asset outright, the
comparison undertaken is a stricter test of the superiority of pooling.
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rriavimun pavolt of (1 §), for each asset:

e GlY]
m i < | 7
i~ (1 I ( )

Nowowe show that with pooling, when the residual risk is
dnersiiable the payoff per asset approaches the theoretical maximum of
B

Theavem 2. Suppise =0 and that Y have bounded second moments. Then

WA H

L n
(; 'L Y| =(l~d8)xy and D }IZY, — Xg.
[

'Hz_uzx~ pooling und tranching is optimal for sufficiently large n.

Contrast this result with Theorem | of Section 3, which showed that
‘dm- :34 the information destruction cffect, pure pooling reduces the
Bsuer's profits, Theorem 2 shows that the issuer can benefit from
poeling and tranching o large number of securities. The intuition for
th]7 result 1s & second effect associated with pooling, the risk diversifi-
cation effect. Even though all agents are risk neutral, diversification is
v;ﬂunbk because it ullows the issuer to construct a low-risk security
xmh‘ greater liquidity. When the residual risk is diversifiable, the issuer
Tl IS debt with 4 face value of Xy that is nearly 1'isk-['re’e and thus
Hsensitive 1o the issuer's private information, While diversification
mproves the issuer’s payoff. note that the consequences of asymmetric
mtormation are stll present in the limit—the issuer’s payoff is
}!:;;Jund;:il h\,a(]lli [ES):}"]’ whereas in the first-best the issuer could recover
Cm: ::d: ;ﬂ,i: it]lllt:ltntll:la\gﬁgin f’ro.m .pooh.n‘g res:ulti from lrisk diversification,

hidera enario in which the residual risks of the assets are
puhjgtiy correlated. In this case, there s no risk diversification fr
Pt.Fi\{lng. and so only the information destruction effect applies {01?1
confirmed by the l'ol]uwing result: ppfies. This is

Theorem 3. Suppos
Je YUPpose & =0 and xg = x, for all i i ng i
Rt uptimal. v + e forany 2, posiing i

thlgt:r:ﬁ:i:;ft;;?éstlﬁ)ojnvpoolmg fiept_:nd on the degree of diversification
ut res .f. s rlt. cost of poolingis the information destruction effect
i r,-t:;-l:;:ulz;)mirl:;:”h‘n%' depends on the nature of the information’
In ar, ¢ mlormation X; is specific ;
mdcp:cx‘idcm 4CIoss ussets, informa‘lliolr: ZIIZ::S::‘U? ea(':llll o more soons
than if the information & is more genera ronce
related across assets, T hat is, the payoff fro(n{

more severe
and hence positively cor-
pooling is Increasing in the
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riskiness of X"

Theorem 4. Let Y= X;+¢g;+m and fr’,-Az X +&+m, and suppulsc' Xjg =
Xp. If X" is a mean-preserving spread of X ", then GHZ:‘ Y= Gliy, ),-].

Theorem 4 implies that the issuer is better off if the private information
is general, rather than specific to each asset. For example,

Covollary. Let Y;= X;+ &;-+ 1 and suppose the private injk)rrﬂ(l{it)n X,: 1\
composed of J independent factors X; = Zf:,@-,-. Suppaose each factor j is
either common, such that £;=§; for all i, or unique, such that .«f,’,[ are
independent draws with the same distribution as &; for all i. Then lli.c issuer's
payoff from pooling and tranching is increasing in the number of comnon
Jactors.

Proof. Note that the distribution of each X; is the sam}e whether the
T _—

factors are common or unique. Only the distribution of X" changes. The

result then follows from the observation that §; is a mean-preserving

spread of n™'S" & B

Figure 1 illustrates a numerical example, plotting the expected payoff

per asset if the issuer issues debt with face value d per asset that is b:acked
by a pool of n assets. For n=1, the optimal face value of the debt for the

.5 7 T T T T
% n= 1000

99 -

98.5

98

Expected Issuer Payoff per Asset

9.5 ’ ' ' 6I0 80 100 120 140 160 180 200
Face Value of Debt per Asset

Figure 1 )
8 ifferent levels of debt and pool size i . o st e are id
gcr-gs%et E{lg’lo]fif?godﬂ;‘: are i.i.d. binomial on {80, 160} with proba;bnlmesd{’;S Yo, ZD\L‘:,CSL:I;; L\:in
ormal \ volatility 0 nd - i jal distribution for X;is used for convel , ¢
al with atility of 50, and n=0. (A binomial distri g f ¢ venience: W
Sic::l;rvnidll::lgali;n‘??irglcaze of a continuous support where the density on [80. 160] converges 10 zero.)
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The Pooling and Tranching of Securitics

mortgage pools, or industry diversification in collateralized bond obliga-
tions, while at the same time explaining the tendency not to combine
underlying asset classes (e.g., mortgages and corporate bonds). sinee tor
these different asset classes the private information is likely to be
uncorrelated.® )

4.2 Multiple tranches and ex post security design

Thus far, we have allowed the issuer to sell a single tranche for each asset
pool. The tranche is designed prior to learning X, and the quantity 1o he
sold is determined after X is known. However, the issuer may be able to do
better by (i) using multiple tranches, and/or (i) postponing the security
design until after X is known. In this section I explore this possibility. and
show that while the solution to the signaling equilibrium changes. the
qualitative results of Section 4.1 continue to hold. In particulur. the risk
diversification benefit of pooling is still present. and leads Lo pooling and
tranching being optimal given sufficient diversification.

If the issuer creates multiple tranches for an asset pool. then once the
information X is learned the issuer will choose a quantity of each tranche,
or a tranche portfolio, to sell to investors. This portfolio itsell can be
interpreted as a security design, in that its payofl is equivalent to some
function F of the payoff of the asset pool. In a companion article {see
DeMarzo (2003b)], I show that issuer’s payoll is increasing in the number
of tranches. Further, if the number of tranches is unlimited, and are
restricted so that each tranche has a monotone payoft, the equilibrium is
equivalent to a setting in which the security design is chosen ex post. Thus,
I describe here the ex post security design problem,21 but note that it is
equivalent to the case of unlimited tranching.

Consider an issuer with a single asset with payoff ¥=X+Z, and for
simplicity maintain Assumption 1 so that X and Z are independent. Given
the private information X, the asset has a private valuation of 81" to
the issuer. If, rather than hold the asset, the issuer designs and ;s'glls the
asset-backed security F for price p, the issuer’s payoff is given by~

E[S(Y — F(Y)) +plX] = 8X + (p — SE[F(Y)IX]).

That is, the issuer receives the private valuation 8X plus the surplus
generated by the sale of the security F.

3 The argument here is most relevant when the issuer’s information is related to variables common to all
assets in a given class (such as risk premia), as opposed to cash flow data specific to an industry or locale.

2 Nachman and Noe (1994) also consider the ex post design problem. However. in their nn.\del the issuer
raises a fixed amount of capital, and 50 & pooling equilibrium resuits. Here the amount of cush raised is
variable, allowing for separation based on the security issued.

2 this case, there is no need to separate the quantity decision from the design decision. since selling
fraction ¢ of security F is equivalent to selling all of the security ¢F.

17
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The issuer chooses the security design F taking as given the market
demand function for securities, given by some function # such that Pl is
the price that investors will pay for security F. Thus, given the private
information X'=x, the issuer chooses a security design F to solve the
following:

IM(x) = max PIF|-8E[F(x + 2)). (8)
Denote by F; the solution to Equation (8) corresponding to X = x. Given
this solution, the price investors will pay should correspond to the
expected payoff of the security conditional on the information revealed
by the issuer’s security choice. That is, the security design chosen by the
issuer serves as a signal of the assets’ value. In equilibrium,

P[Fy] = E[Fx(X + Z)|Fy]. (9)

A signaling equilibrium corresponds to a simultaneous solution to
Equations (8) and (9). In DeMarzo (2003b), 1 show that if attention is
restricted to securities such that both the security payoff, F( y), and the
residual retained by the issuer, y—F(y), are nondecreasing, there is a
unique equilibrium satisfying the Intuitive Criterion of Cho and Kreps
(1987). In this equilibrium, the optimal security design is a debt contract,
with the face value of the debt depending on the private information X,
That is, for each x, there is a face value d(x) such that>?

F(Y) =min(d(x), Y).
Given this result, rewrite the issuer’s problem [Equation (8)] as
I(x) = max P(d) - 8E[min(d, x + Z)], (10)

where P(d) is the market price of debt with face value d.
We have the following immediate result:

Lemma 7. For any demand SJunction P, the issuer's profit U7 is continuous,

decreasing, and convex in x. Also, the Jace value of the debt can be assumed
to be decreasing in x.

Proof. For any fixed d, the objective in Equation (10) is continuous,
decreasing and convex in x, with a subgradient of —8 Pr(d—x>2Z ).
Since I'* is the upper-envelope of such functions, it is also continuous,
decreasing and convex, Finally, optimal d can be chosen to be nonincreas-
ing follows from the super-modularity of £ [min (d, x+ Z)|. B

 With multiple tranches, this is equivalent to tranches bein

| g prioritized, and the issuer sclling the most
senior tranches {irst up to a “hurdle” ¢l

ass; this is reasonably descriptive of actual practice.
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Thus, the key property of convexity of the issuer’s payoff 1191§s t'olr thsr
seltiﬁg as well. Also, since the issuer will optimally choose & iau.ewva ‘u‘e‘or1
the debt that is decreasing in X, investors inlerprgt large debt 35511e? ,lis g
negative signal about the value of the assets. This leads to a separating
equilibrium: -
Lemma 8. Given the asset pool Y, there is a unique separating eqm{;hrgﬁz
with TH(x)=(1 =8) E[min(d(x),x+ Z}], P*(fl(.x)) = E[min(d(x), x+ £},
and d'(x) determined by the differential equation.

0 1 Pr(Z<d*(x)—x) (1)

) =TT ez s (x) - ~)

]

together with the boundary condition, d*(xp) = <.

The equilibrium described by Lemma 8 depend§ on two pari%r;eter.s.:t tv:;;l
which affects the boundary condition, and 'the distribution of . \‘\I/ll1 i e
~7. which affects the differential Equation (11). Thus,l*to co pZ)

] * v - ~ o -‘; (‘: , ~
equilibria across environments, define I'"(x; .go, ; Z)t;u;d éoi;esp?)nding

S ions Lemma or th

to represent the solutions of : ! rresp :
param]zter values. The next result establishes properties of T* analogou
to Lemma 5: )
Lemma 9. The issuer’s payoff is homogeneous of degree I; tha{ is, ciE((\i\:z(,,.
~Z)=T*(ax; axy, ~aZ). In addition, T*(x; xg, ~Z )= (‘1 — 5),\9 +' e r of
0, ~Z). Finally, T*(x; xo, ~Z)<(l —8) xo, and the inequality is strict 1
X > xg and Z is nondegenerate.

Having characterized the optimal security choic;:l f(?r a 51’ngle aosfsfe;l :;S

i i i assets and compare the issuer's pay
now consider an issuer with n assets an _ SR
i as s selling and tranching each asset sep

tranching a pool of assets versus se ba-
rately. The following result extends Theorem 2 through Theorem 4 to
case of ex post security design (unlimited tranching):

Theorem 5.

(i) Suppose n=0 so that the residual risk is idiosyncratic, and that Yt,
] PP-(15Se
has bounded second moments. Then as n— 00, /the ip,u. ;zm‘a[
payoff from pooling and tranching approaches the theot
maximum,

n 14 n
* X | i — )Xo,
r (%zx,-, S ,,_zlz)-»u "
i=1 i=1 i=
so that pooling is optimal for sufficiently large n.

(if) Suppose g;=0, so that the residual risk is common. Then pooling is
suboptimal for any n.
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(lll) In the Seilir "
ing of Theorem 4
¢ > corollare " . . . S 3
(and the ((H()”(H.l ), the hurt by the adverse selection, since the valuation of informed buyers 18

Jrom pooling and tranchine i i issuer's payoff
Je TUUInE and tranching is increasing in the munber of ¢ “ st uninformec '8
actors in the information X, o cormmmaon strictly below that of uninformed buyers.
Thus, with either e ’ To determine the degree of underpricing, let O“(XlIp, py € [0, 1] be the
¥ " - . - ~ . . .
X ante or ex total allocation to uninformed buyers, with Q" weukly decreasing n

post security design, pooling and tranching o o
fication effect dominates the information the degree of underpricing, X/p, and, to capture cash constraints for the

informed, weakly increasing in the size of the issue, p. This reduced form
encompasses a variety of allocation mechanisms, For example, suppose
the mechanism is a first price auction and informed buyers have discount
fuctor & and no cash constraint. Then the informed buy if 8X > p. so
that Q"(X/p, p)=1[6X/p < 1], where 1[ -] is the indicator function. For a
more complex example, if 6 is the probability thata single informed trader
s in the market, and if this trader has a cash constraint C, then

is optimal if the risk diversj
destruction effect,

3. Pooling by Uninformed Issuers

Sect1011§ 3 and 4 demonstrated that for
noftroptlma%l, thpugh pooling and tra
suificient diversification within the po

an .informed issuer, pure pooling is
nching may be optimal if there is
ol. In this section, I show that for an

uninformed seller selli i
' ng to both informed : infi
Dootinae ' _ med and uninformed buyers, pur ‘ ! ’ \
unintb%me(j(;gg::sl_hThlls éeads informed snd uninformed b )t,h“ Z:ﬁ; 0“(X/p.p)=118X/p<1]+(l— omin(1, C/p)1BX/p = 1.
shou e observed selli ass-thr ‘
Suppote that (e i1 e of erved s xlr;gpass thloug’l,l pools, Finally, suppose that a minimum level of under-pricing is necessary to
s _cali “originators,” that specialize attract informed buyers. To summarize:

in the marketin i

T ﬁ;rns o ;Igl g.ilg’other services associated with originating the assets

or helding thom ave a comparative advantage in valuing these assets'
O maturity and instead plan to sell the assets at their

is weakly decreasing in its first argument and is weakly

Assumption 2. Q"
ent. There exists B> 1 such

increasing and continuous in its second argum

I]]a[‘ket p[ice and A p br T b (1 €
- [ede ]0 e apite i
: J ts. y th Cdplldl fOr use in furthel' Ol'iginﬂtion t/u[t ”( ' '\.“') 1 0 med n
COIISldEI an Ol’iginator holding an asset W. { b ld JnCh”’hth Llili iUl 1 Of th uninf : ] o iS | lar -
e llh tutulle Cash ﬂOW l su thatt :)y arn nonneg: U ¢ pect p e

Y=X42 igi
i and. g;issucrjr;c; Stl;a;tt]l(le 01'1%;1nator does not specialize in valuin
, : now the information X,
many potential risk-neutral uni .
uninformed by or
m yers for th
; }lfélr(éw X, and who st}are the market discount rate
are also potential informed investors who d

g the
As before, there are
e asset, who also do
of zero

' . _ ) ST i X - >0}.
o know the realiza- P[] = max{p|E[Q"(X/p.p)( Pz 0

Lemma 10. Suppose X is continuous with support [xg, x1]. Then the equili-

brium uninformed bid is given by

g ) 1s ) / (/ Oh j ( // X \/ ) y

assume that buyers are ano so that it is i i

con\;}ileelt;eg exclude. these in?'gi?;(l)c]:? ‘[:L{l)yglztf]rtc)llill?l]lgorisa:')litf or the seflr o

b for e ;S:ilefrlési;s an ass'et for sale, uninformed buyers bid some price

f verage. Becau.s s [Lrlic':efls. such that the U}linformcd break-even on

Know . they far s clll\l,e?;g]ﬂil compete with informed buyers who

know - » they fice an adverse (Slegzcg; Oéio%r;b(l)?nﬁ) "this leads 1o un der- Theorem 6. Suppose X; are independent, the assumptions of Lemma 10
s. The seller is also hold, and L 5", E[Xj|—x > 0 asn — oc. Then1P*[}; Xi]—x.

Thus, as the size of the pool grows large, the per-asset payoff to the
originator approaches the assets’ expected value (Figure 3). The intui-
d, the originator might have tion for this is straightforward. The adverse selection problem comes from

dge of the original source of the informed buyers’ ability to purchase the best assets. Pooling reduces

the assets It could then signal t i us |1 118 ¢ W, 1] ‘l )

s . . 18N¢ his informa tion throuw, b its issu; isi i € precision Of the 5313

' p T g § 18suance decision in the ays described in i i ' ’
Sections 3 and 4. What is relevant for our purposes s that the informed b\l)el S possess some information v‘ ' :

not known to the originator. In thei
ator. In the int i i
2 In general, & depends on their ¢ 1@ interest of simpicity, I therefore assume the originator is uninformed ill likely contai - assets. This result provides an important motiva-
eir ability to identify underpriced | will likely contain poor assels. p )i p ) |
tions coOSts) n mar ets where

Now consider the incentives for pooling by an originator. In contrast to
the results of Section 3 for an informed issuer, the following result shows
that pure pass-through securities can be optimal for an uninformed
originator, and can approach the first-best outcome.

24 hi
his does n { i igi
ot require that the originator have no priv:lle inf‘ormzltion indee
T —indee

private information aboul the cemponent Z of the cash flows from its knowle

assets elsewhere, as | i i i l i iti
ere, as 1 show in Section 6. tion for pooling (in addition to transac
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6. A Dynamic Model of Informed Intermediation

Lll“lflliil ;J:I;;lt:j ofl lthe previous sections demonstrate the following. While
ed sellers can benefit by pooling a ior inf
anntor I . : £ assets prior to sale, informed
m;]};g:]ﬁ?og gain flljom }})]ulc pooling. On the other hand informed sellers
% fit by pooling the assets and selling a debt trar ini
these resats S ooling th selling a debt tranche. Combining
. sults ontext of a dynamic mod "ovi ¢
informed intermediation. ° provides a theory of
e )s(igllple, t.notm, for 1ptermcd1atnon 1s implied by the returns to scale in
.mcts 0 mléddf]d tranching process. An informed originator or holder of
u.n.im.‘) oui 'm]l the assets (or a tranche backed by them) directly to
un cbrmec n'{v‘eslorls]‘. Informed investment banks can add value h};w
‘e, Dy acquiring these assets and formi : ,
tranching (Figtres, and forming even larger pools prior to
rrlle -' . . ! ~ . . -
e :,;f.ond channel for mtermediation begins with uninformed origi
: < YR N . IS . . . :
paors o plz;;slu holldus.‘ To minimize underpricing, uninformed originga
e L assets prior to sale, Infor i : _
wil ale, med investment by i
purchase the best pools bas i Higp ks will then
. )18 based on their superior i i
. e information. After ir-
£ the assets, the investment bank pools them further and seli{: 2 sonio

tranche 1o investors i a seni

Stors I order to raj W 1 { ion. o
purchases, S¢ new capital for additional asset
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Figure 4
The flow of assets over time

In this section I build a simple dynamic model of this second channel for
intermediation. While highly stylized, it demonstrates that the model is a
consistent story of intermediation. Unlike standard models of informed
trading which assume a buy and hold strategy for the informed. the model
developed here illustrates the benefits of asset resale through securitiza-
tion. In particular, I show how the ability to repackage assets allows the
intermediary to leverage its capital and increase the returns from its
information. The model also reveals how the key parameters of the static
model, the worst-case information x, and the discount factor 8, urise
endogenously from more primitive features of the murket.

6.1 The timing

Consider a dynamic setting with the following timing. There is a single
intermediary with access to a technology yielding private information. At
the start of period ¢, the intermediary holds a portfolio of cash C, and
“old” securities with value O,. At the start of period 1. the origination
market opens. The intermediary can use its available cash and superior
information to purchase assets in the origination market that are
underpriced.

After purchasing assets in the origination market, the intermediary
holds both old securities (with value O, plus any new securities just
acquired. Denote the full-information value of the new securities by N,.
In addition, the intermediary might have unused cush, denoted U,, if the
supply of new underpriced securities did not exceed its original cash
balance C,.

Once the origination market closes, the intermediary then has the
opportunity to sell assets from its portfolio in the secondary market. By
selling assets, the intermediary raises cash it can use in period £+ 1. -

[ assume that any private information the intermediary had regardplg
securities purchased prior to period f becomes public by the start of period
t. Thus, in the sale phase, the intermediary will sell all the old seeurities 0,
that were held at the start of the period for their full-information value.
The new assets N, will either be sold for cash or retained until the next
period. Here there is a lemons problem since the imerm«;diury hg]ds
private information about these securities. However, the intermediary
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Figure 5
The timing of the model

also has a motive to trade, which is to raise additional cash to purchase
assets next period. Thus, the signaling models of Sections 3 and 4 will
determine the fraction of the value of the newly acquired assets that are
sold and retained. Recall that in the separating equilibria of the previous
analysis, the fraction sold, will be sold for its full information value,
denoted S,. Thus, the fraction retained has value N, — S,.?¢ The intermedi-
ary then begins the next period with a portfolio of cash C,, | = U, + &, + O,
and old securities worth O, =N, — §, (Figure 5).

In the following sections, 1 employ the models of this article to
determine the dynamics of this intermediation process.

6.2 Asset acquisition with cash constraints
Each period, uninformed originators sell assets in the origination market.
Following Section 5, uninformed originators have an incentive to
pool assets prior to sale, so each asset can be thought of as pool of even
smaller assets. The pool sold by issuer /i in period ¢ has payoff
Yi=Xiy+Zy

To provide a simple characterization of the equilibrium in the origina-
tion market, assume there is a continuum of originators i € [0, M,] with
associated measure p. I assume that the intermediary’s private informa-

tion about each asset JX;, is independent and identically distributed. In this
case, it is natural to assume that

pfi € [0, M) X < x} = M,Pr(X, < x),

% The intermediary might also have an incentive to issue securities backed by its future profit stream, rather
than just its existing portfolio. Modeling this alternative is beyond the scope of this article. However, it is
natural that such securities would be subject to even more extreme asymmetric information problems
than the asset-backed securities considered. (For example, consider the distinction between secured and
unsecured debt.) Serious moral hazard considerations would also be introduced. Thus, the intermediary
would rely on asset-backed securities as a primary source of capital. This is consistent with actual

practice: investment banks raise almost all of the cash used for acquiring new assets by selling or
borrowing against existing assets in their portfolio.
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where X, has the same distribution as each of the X.,-,. Let ,\i, b? contmu;
ously distributed. To simplify notation, I drop the time subscripts excep
or eSSary. .

WhSLiI:cEelC}T; assyets are ex ante identical, the uninfm:n}ed bld. a cc‘n'nm.on
price p for all assets. [ assume the intermedl%ry participates n a-n;lc(tjl(ni
B < 1 of the sales in the origination market.”" In the al?sence of a bu gf%l
constraint, the intermediary would purchase assets §v1th’ X,~>p, at tc?tdh
cost MPr(X > p) p. If this cost exceeds the int':?l'medlary 5 ayaxlable cas
C. the intermediary will buy assets above a critical quality x°, where

v = min’ such that x'>p and OMPr(X > dp<c (12)

Anticipating this, uninformed investors realize tha't they receive assteht:
disproportionately, that is, more of the lowest quality assets. He.?lce, e
equilibrium bid p of the uninformed is the largest p satisfying the ze
profit condition

E[(1 - 01X > xD(X ~p)] = 0. (13)

Together, Equations (12) and (13) deter‘mine the equilibrigm \falusg’ Sf
x¢and p given 6 and C/M, the amount of cash held by the interme 15dty
relative to the size of the market. This extends the model Qf 'Sectlo.n : S[
the continuum case.”® Note the following comparative statistics for p an
+¢ as a function of the cash available to the intermediary.

Lemma 11. There exists C <M E x ] such that for C< C, both x° and p
strictly decrease with C. For C2 C,x"=p=pa.

Figure 6 plots an example showing x“andpasa function Of; C/M;gg(;)tze
that for C/M > 72, the cash constraint no longer binds ?.l'.ld X :p-—f. 2.
However, for C/M < 72, the intermediary earns positive return from

additional cash balances since the marginal security is underpriced
(x“>p). N o

Figure 6 shows the worst-case value of the lpurchdsc% portfolio,
OPr(X > x¢) x¢, when valued at the minimum quality level x. T asfs:ume};
as is true in this case, that this amount increases as the amount orf cas
spent increases and x* decreases:

Assumption 3. 0Pr(X > x°) x“is decreasing in X for x*>p

i 3 aded i ¢ riginators ma
7 Informed traders may be unaware of some frz_lc.uonvoi the assets trdd;(‘l \;nllthe(alglrtie:s ﬁ‘r cc:; llgf;:lr]l::(c))rr5 bcs{
be able to prevent informed traders from participating with some pro ‘11 1hyl e et i i well
interest as it reduces underpricing). The assumption 8 < ! gua_rantec? tk 2 4
behaved as the intermediary’s expenditures approuch the size of the market.

i ace ass ' E informed
28 [f a single infinitesimal originator were to cnter this market and place (lsse/ls‘(.Xﬂ gpl:‘?cro‘a;yill:; g}; H>1f;, o
intermediary would purchase thesc assets if X'fp' > x*lp. If we define § = p < ng e s
Q"= 1—01[8X" > p']. The originator thus faces the same problem as in Section 5.
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Xthqstuirsnp’t:.o‘rfl_ 3dlS a dlhtllbUllOl.léll assumption on the private information
]arge( L] Iidi;; 1(1:. b)t/};staniard distributions if the volatility of X is not too
. phes that the minimal resale v: § i nedi

v ‘ ilue ary’
portfolio is increasing in its size. ( o the intermediany's

6.3 Assct resale

Al X ‘ -

(at; th-e~ cdnd of thle dcqlll.?ltlon stage, the intermediary holds o
quired in previous periods), new assets (just

unused cash in the event A° = p. The

Id assets
acquired), as well as any
amount of unused cash is given by

U= C—0MPr(X >x)p. (14)
T : : j
he value of the new assets Just purchased by the intermediary is given by

N=0ME[X1[X > x| = C~ U+ M(E[X] - p). (15)

29 F S
or example, it is satisfied il X is uni
ple, it s satis X' is uniform on [y, i $ ¥
: g Isfi X, xy] with v < 2y,
and xo > E£[£]. Inthe case of a lognormal dixtribmion] o o

=¥y + ¢ with £ exponential
example here, we could raise § to 0.999 or o to 4204

hx‘lfholds aslong ZISAﬂ and or are not too large. In the
cfore the assumption is violated.
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The first expression is the value of the assets purchased. The second
expression follows from Equation (13): because the uninformed earn
zero profits, the losses of the sellers M{(E[X] - p) correspond to the profits
of the intermediary.

After acquiring new assets, the intermediary may resell them immedi-
ately or hold them until they are old and then resell them. The advantage
of immediate resale is that the cash raised can be used to purchase new
securities in the next period. The disadvantage is that the intermediary
faces a lemons problem due to its private information.

First, consider the resale problem in the absence of asset securitization/
tranching. The results in Section 3 establish that an informed intermediary
should sell the assets individually. In that case there is a unique separating
equilibrium, given in Lemma 2, in which an asset with value x is priced
correctly and issued in quantity

=
A
0" (x;x0,8) = (E) '

where v, is the worst-case information of the intermediary, and & reflects
the intermediary’s preference for cash. Note that in this case, xp = x°, the
Jowest quality asset purchased by the intermediary in the acquisition
stage.

Given the parameter 8 (we will sce how 5 is determined in the next
section), the intermediary will raise cash from the resale of

S = gME[XQ* (X:x,8)1[X > x . (16)

immediately by reselling the assets. The remaining fraction 1 — Q" will be
held for sale in the following period when the private information X is
publicly known.

Alternatively, suppose tranching is possible. [ assume the residual risk
Z,;is diversifiable, so that it is eliminated in large pools. Thus, the results of
Section 4 imply that it is optimal for the intermediary to form a pool of the
purchased assets, and issue debt with face value xq =x" per asset. This
debt is riskless, and so will sell for its face value of x¢, allowing the issuer to
raise cash

§* = OMPr(X > x)x°. (17)

The remaining junior tranche of the pool is sold in the following period
for N—S°. Comparing Equations (16) and (17), pooling and tranching
benefit the intermediary by allowing it to raise more cash through
immediate resale. That is, because xQ'(x; ¥, 8) < x¢ for x> &, we have
s> St
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6.4 Growth through securitization
The ar_mlysm above leads to the following specification for the dynamic
evolution of the intermediary. From Equations (12) and (13),

Xy =xNC M), p=p(C, M,).
Combining this with Equations (14) and (15), it is possible to write
UJ: U(C,,ﬂ/[r)s NI:N(C[, M,)

Finally, using either Equation (16) (no tranching, S = S") or Equation (17)
(tranching, S=5"), we have

Sl = S(Bl; Ch M])’

where S=S' or S=¢" depending on the setting. This leads to the
subsequent portfolio for the intermediary,

Conr=U+S+0, 0, =N, S, (18)

The only endogenous parameter not identified by the above system is §,
the }r?ternlediary’s preference for cash. Suppose the intermediary raisesj
additional cash in period 1. The intermediary can use this cash to
purchase assets with value x7,, for price p,,; and, because the incremental
p?rclggse is of the lowest quality asset, immediately resell the asset for price
Xt+1.7 Thus, a marginal dollar of cash generates a return of Xos1/Prsr SO
that the intermediary’s preference for cash in period ¢ is given b; a

5,=p,+1/xf+151. (19)

Equat'ion (19} can be combined with the above to yield the following
fixed-point problem for §,,

5, = P(Crir, M) — UG, M)+ S(8, C, M)+ O, M)
X(Crpr, Mizt) x4 U(Ci, M,) + S(8,, C,, M;) + O, M)

(20)
The solution to Equation (20) implies that®!

8y = B(Cu 01, Mz-Mr+1)'

"~ This holds with or without tranchin z, SINCE 1N 4 separating equ w € Wi e DE alin,
t A separat] liby b
£ pa ng equulibrium th orst type bears no sign £

3 With tranching, S=
8, 5= 8" does not depend on &, hence the i i L .
: e D S not s solution to Equation (20) is immediate. Wi
tranching, §=S' is decreasing in 8,, and the [ixed-point problem is nontrivial. ) ediate. Without
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Combining all of the above, given some exogenous growth of the
origination market, we may characterize the growth of the intermediary

Cls Ol MM C"1+17 OH'ls

and derive the dynamics of market prices and pooling and tranching
activity. The following result demonstrates the benefit of pooling and
tranching for the intermediary:

Theovem 7. Given initial assets, (Cy, Op), the size of the intermediary,
Cy+ O, on date T>2 will be larger when asset securitization pooling
and tranching) is possible than when assets are sold individually or there is no
resale. The comparison is strict if 8, < | for some t <T — 1.

Figure 7 shows the growth rate of the intermediary with pooling and
tranching, individual resale, and no resale (buy and hold). Also shown is
the marginal return on the worst assets purchased, x‘/p, showing the
intermediary’s preference for cash.

For example, Figure 7 implies that if the market growth rate is 3%, with
pooling and tranching the intermediary will grow faster than the market
until its size reaches a steady state of about 36% of the total market. In
contrast, with individual resale, the intermediary grows to about 10% of

1.07
1.08

1.05

1.04 Growth (Pooling and Tranching)

Growth (Individual Resale)

1.02 R
Growth (No Resale) o SR m s m e m ST e _____
1.01 T
1
0‘990 10 20 30 40 50 60 70 80 90
Cash (C/M)
Figure 7

Intermediary growth rate versus size for different resale assumptions (parameters match Figure 6)
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the market, and without resale, the steady state size of the intermediary is
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. a2
Relow 170 of the total market.

7. Conchnion

The results of this article provide a theory of financial intermedmtmn
hased wpon intermediaries having private information regarding asset
values. Due toits information advantage, the intermediary has tl.le. abl!xty
to dentify high quality and therefore underpriced assets in the origination
ket '.I'hc»imcrmediury can therefore profit by buying and h(_)ldmg
these assets. Of course, this creates an adverse selection problem m'the
origination market, implying that in equilibrium these assets will be priced
at a discount. In order to mitigate this problem, originators have an
incentive to pool the assets prior to selling them. Pooling reduces the

intermediary’s ubility to purchase the assets that are most underpriced.

Once the intermediary has purchased assets in the origination market, it
can hold the assets to maturity, The intermediary, however, would prefer
te liuidate the assets at their true value to raise cash to use for future asstet
intermediary wishes to leverage its
avatlable cupital to exploit its information for as many deals as possible.
because the intermediary has private information regard-
problem if it attempts to sell the assets for
emons problem leads to a natural signaling equilibrium in
of the assets by its willingness
s. [ show that if only pure pass-
finds it optimal to sell the
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Unfortunately,
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vash, This |
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has lower residual risk. This risk divcrsiﬁcatipp benelit is thefclorlc
reduced if the residual risks of the assets are posmv‘ely co_rrslutcd, Th”us;
pooling and tranching is most effective for assets tc.)r“ which the private
information is general and the residual risks are specific.

Appendix

Proof of Lenima 3. Given X_,,. consider lheAsﬂlc of asset n. By thc;l lnlll.ly;};l::u;];(}:;o‘l;;
the éonditional support of X, is an interval with grg:{t_est lo-wcr bm‘l‘n : .\,,_”‘. ™ .n. wj[h e
previous resulls, there is a unique separating e.qulhbnum to{: 1hé sale OII :s:u [f,e -
issuer’s prolit given by w( X, /x,0) X0 Now consider the sale g)t a,.s'sct)nil ) .O.flzl::ﬁ ) i e
profit in the sale of asset n does not dep?nd on the outcome o(}hc sale s .
issuer’s problem is unchanged. The proof thus proceeds by induction.

0 ~ ~ N o age . . ". ~ ,)'
Proof of Lemma 5. For any security design F for 2Y, detine the sLLuljl_\;f :g;k;‘:“
by F(y)=aF(y/a). Then F(aY)=aF(Y). Hence f=af, and homogencity >
immediately from Equation (4).

i Tl < ( 5)f1 > inequality then
Next note that since 7 is decreasing, #{(f/fy)fo < #(llfl»:(l —8)fy. The inequality the
follows since f=E[F(Y)| X]< E[ Yl} X]; X, soZt)hzllAt(,f;;lnwst urey. Thas, Fis stitl
. " o - xg+ =Xy . s, 3
For strictness, suppose fiy=xq. Then Fx, ‘ : purely. Thus, s strey
i ’ ‘o -+ ince F is nondecreasing everywhere, il x>y »
increasing on the support of xy+ Z. Since F crywhere, |f 4= et
]11-‘1((’\~r+ Z)g> F(xo+ Z) for Z in the interior of its support, or almost surely. Hence f/f, >.
al]ﬁosl surely. Since 7 is strictly decreasing, the result follows.

i {, is conti s and
Proof of Theorem 2. Define H,(d,x) = E[mm(d,,\‘+£2'f?, a,-)}.. Illf, is L:mnuous
increasing, and by the Law of Large Numbers, H,(d, x) — min{d, x) as n — .

' i o) = xo. Since > 9=
i i =X 4= H,(d, 2 /n) —min(d, Xp) = Xp. dz
st consider d=xy. Then [ n(d, X d. 3 e
HI?:II Xn/n) > H,(d,x3/n), we also have 79— x4 almost surely. Henc_v.. b:[ngnc{{&jg“[ltm
Ell)\" (1 -8)\'0 Since this is an upper bound for G by Lemma 5, we ¢
m(xo = (1 —8)xp. ‘
sy (=8> Y0, Gy ‘ e
GLfZéljlowf]lha([ D )m{l).lst conl'\rerge to xy. consider d < xg. In l}.mt case, : nI (/l.h:l) Cl-isé
T 4y fd] < (1 = 8)d, which is suboptimal. Next consider ¢ > xg. In ase,
o Elr (S /1G] < » Whi e oy
4, xg, 50 it remains to show that im,. E[m(f* /)] < (| ' implies that fim,
! Since G[Y)] > E[m(Xidxn)xp) > m(E [X,-]/x,-o).\‘,-()(,) I;unut;on c}(1 . {‘)m.-u“ o A,]__t[‘v'],/
h i - Xy) Su 4 > N,
- 1> xo. Thus, there exists N and y &€ (0, d Xy : " e
Lf[z\)‘]lfyv\oliy h;polhesis X"fn has bounded second moment, s0 lhjb/ ‘z};r(([)/('/:;;'/v,
xo+7y. , ¢ . 4 . N P ;
”/2) ;)/\ for some A > 0. Also, there exists N > N such t}’mt for di]l r;d/ o 7/40)) ”
l + /4 and Hy(d,x") < x¢ + /6. Thus, for all n> N, Pr(w(f*/fi) € #5595
2 Xp e AR =

|
which proves the result.

i el 1if the assets are

Proof of Theorem 3. Fix an n and let d=D"[¥"/n}, the optimal ?Cbl level lf”lt‘ibenh;;? .

Z’Z(IJ‘Edq Next define h(x) = Emin(d, x+ )], and note tha; ’/1‘ ;;,Icosni;i\éc.v e s
fe'l]izat.ion x, Jensen’s inequality implies h( 3" x;/n) 2 Y ih(x:)/n.

this implies
i h(x;)
h(/l.Zixi) <l h(xi) S,l, 77(7( A1)>,
"\ Thx) )T\ hix) T\
A2 ) > a—c)lh.
{ if and E[A4%] < b, then for ¢ € [0, 4], Pr(A 2 ) > {a —¢
33 This follows from the fact that if E[A4] >a and E[47] < b, then
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\! ae b 2y i3 ¥
vhere the last inequality follows from the convexity of 7. Thus

] .
o[t r] = £ (MU ] gy (B2
Z T\ iy )0 =5 [ 3 [W(mxm))h(.\-m')} < I57ay)

where the last inequality follows since # D[ ¥ in general.

Proof of Theorem 4. Define id, )= E [mindd, x + 9+ 3 e/n)), and note

and increasing, N J y
e e é ; g] ext dcﬁpc Otel, x, xg) = ar(W(d, xYhd, xpDh(dd, xp). Since 7 is decreasing o
X, 15 also decreasing and convex in x. Therefore )

E [Q (d,ﬁ : Xi'leZx‘“)] > E [Q(d.,%zl’?,u %Z Y.u)] .

I

which proves the result.

Proof of Lenuna 8. In an
the first-best, w
is equivalent to
face value equal
ch

i b ¥y sequential equilibrium, the “worst type™ vq behaves according
Ich i the context of this model is to sell all of the assets to the investors, Tt

e to c:]rlgreafer than the maximum possible payolf. It is then straightforward
model satisfies the standard single crossing condition and that the abo

dirf‘erentiﬁi Cqua[ioﬂ d i
oes lndeed detel'minc an equilibri iqueness fi 3 imi
I ne t zl“‘ o (1 )' ) tilibrium. Ul]lqll(.lll.hb follows by simil

Proof of Lemima 9. Define &(x) = ad"(xfu; xy, ~Z). Then dlaxy) = o and
1 ' Z
d'(x) = a=d"(x/axp, ~Z) = — L DL/ 50, ~Z) = x/a)
(1 =8)Pr{Z > d*(x/a; xy, ~Z) —x]a)
_ _ 1 PrlaZz<d{x)—x)
(1 =8)Pr{nZ > d(x) — x)
Hence, d(x) = o*(x; axy, ~aZ). Then we have,
I*(ax; axp, ~aZ) = (1 — 8)E[min(d(ax), ax + e 2)]
= (1 — ) E[min{ad*(x; xg, ~Z),ax + uZ)|
= al™{x; x9, ~2).
Next define dy(x) = d*(x + Xg; X, ~Z) — xg. Then dy(0) = oc and
di(x) = d"(x+ 501 30, ~Z) = — L PHUZ<d (x4 xoix, ~2) - (x + o))
(1 =8) Pr{Z>d*(x + xo;.x9, ~Z) — (x + X))
—__ 1 PriZ<dy(x)~x)
(1 =8)Pr(Z>dy(x)—x)"
Thus, dy(x) = d*(x; 0, ~Z). Therefore,
M(x—xp; 0, ~Z) = (1 — B} E[min(dy(x - xp), x ~ xp + Z)]
=(l —S)E[min(d*(.\';xg, ~Z)— X0, X — Xy + Z))
= I"(xi x0, ~Z) — (1 - 8)x.
For the bound on I"*, note that
I {x0; X0, ~Z) = (1 — 8)E[min(d* (xg; xq, ~Z) X+ Z)] = (1~ 8)E]xg + Z} = (1-8)xy,

gnd by Lemma 7, ™ is' decreasing in x. For strictness, note that if [*
xe;:rtfasfﬁ.bsf Ler'flma 7 it must be constant. Therefore, Elmin(d"(x; xg,~2Z), x + Z)]=xy. Fo
g X0, dis {{nphes that ?t'(.r? + Z > d"(x; xp, ~Z)) >0, But this implies type x, would' ;)).refe
o issue d'(x; xg, ~Z), violating incentive compatibility,
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Proof of Theorem 5. For case (i), suppose the issuer sells debt with a (per-asset) face value of
d = Lxi In uny sequential equilibrium, this debt will sell for u (per-asset) price of at least
pn = Elmin(tx, Lyl + Le)). Therefore,
M (xm L ~Lz0) 2 py - SEmin(lxg. 1 X"+ Lem)]
2 =81
= (1 -8)Lx + E[min(0, L&")]
Ly L5
2 (I-8)5— 730
where the last inequality follows from an application of Cauchy-Schwarz and var(g;) <&
For an upper bound, recall from Lemma 9 that the per-asset payofT to the issuer is bounded
above by (1 — 8)x{/n, which has the same limit.
For case (ii), if the issuer pools the assets the resulting payolt is [ (3" Xdn: 3_ixwln, ~m).
From Lemma 9, this is cqual to (3 ,(X;— xwln; 0, ~m} +(1 8% ;xg/n. Next, by
Lemma 7, I is convex, so that

r (%,ZI(X.- ~x);0, ~ 77) +(1-8) (;‘,le.n) < ,‘—,;F%Xf —xi0:0, ~7) + (1= 8)xio
N
= ,—"ZF'(X.':-\‘,U- ~n).
sl

Hence, the payoff from the sales of separate tranches exceeds the payoff {rom tranching a
single asset pool. Finally, case (iii) follows immediately from the convexity of I'™. B

Proof of Lemma 10. The expected profits of an uninformed bidder with bid p is given by
E[Q"(X—-p)]. Since |QX -p)|<|X-pl, dominated convergence and the continuity
assumptions on Q" imply that E[Q“(X —p)] is continuous in p. Since profits are positive
{negative) for p=xq (p=x;), P" is interior and earns zero profits for the uninformed bidders,
and is an equilibrium since any higher bid earns negative profits. Finally, E[Q(X —p)] >0
implies

COV( Qu, X

where the second inequality follows since 0" is weakly decreasing in X, and the inequality is
strict if Q" is not constant. |

Proof of Theorem 6. First note that 1P [37, X} = P [3 3 X]. For any v € (1, B). let
pn = B~ 'yE[LX"]. From the Schwarz inequality,

E[4|B) > E|4] — 0.4 \/ﬁ -1l

Since Var{X"/n] = %Y1 Var[X;] < 17 this implies,

= n

| i
E[Lx"Lx"<Bp,] > ELX"] - VR aTR L @n
" - t

Since vy > 1, by the Weak Law of Large Numbers,

Pr(L X" <Bp.) = Pr(b (X"~ ELX") < (y - D3 EX™) =1

33




i Review of Financiad Studies v I8 n T 2005

Thus. Equation (21) implies E[} X1 X" < fp, ] —x. Hence, for sulticicntly large n, since p,
o A &

EQL X"y

i
‘[Q”(,l,' “’“-I’n ” )

where the Last inequality follows since Q(Xip, p) = X < Bp}+ 11X = Bp|Q“(XIp. P). )

Thus, at price p,, uninformed investors eurn a nonnegative profit. This implies that
ELY e I"[,'»IAX""J‘ oy, and therefore lim,,_. ‘,I“[},‘\'"} € (B yx.x). Since this is true for
all ¥ & (1, B). we have P [L47)—x, B

ms ELX LY < g, ]

Proof of Lemma 11 Differentiating Equation (13) implies p decreases (increases) as x*
decreases for v (<) p. Continuity of p in x* follows from the continuity of X. Thus there
exists o, such that A 2 p for x> pq. Since the cash constraint in Equation (12) is relaxed with
an increase in €, both 1 und p strictly decrease with C until x“=p = p,,. This occurs for
C = o= OMPH(X > pylpa < 0Mpy < BAE] X, ]

Proof of Theorem 7. Given the same initial cash, N, is equal in both cuses. However, since
§* > 8" the inermediary has more cash at date 1 with pooling and tranching. If 8y <,
Xy s and so py s decreasing in the amount of cash held by the intermediary {rom
Lemma 11 Thus, Ny will be higher with pooling and tranching, and thus so will Cs + 0s.
Also, from Assumption 3, the decrease in xy implies thut Cy will also be higher with pooling
and tranching. Thus, on date 2 the intermediury has both higher cash and higher total assets
with pooling und tranching. This argument can be repeated at each future date. ]
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