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1 Introduction

This paper grew out of various recent discussions with academics and practitioners
around the theme of the interplay between insurance and finance. Some issues were:

— The increasing collaboration between insurance companies and banks.

— The emergence of finance related insurance products, as there are catastrophe
futures and options, PCS options, index linked policies, . . .

— The deregulation of various (national) insurance markets.

— The discussions around risk management methodology for financial institu-
tions (think of the various Basle Committee Reports).

— The evolution from a more liability modelling oriented industry (insurance)
to a more global financial industry involving asset-liability and risk-capital
based modelling.

— The emergence of financial engineering as a new profession, its interplay with
actuarial training and research.

Besides these more general issues, specific questions were recently discussed in pa-
pers like Gerber and Shiu (1994), Embrechts and Meister (1995) and the references
therein. An interesting approach is to be found in Phillips and Cummins (1995) and
references therein. In this paper, rather than aiming at giving a complete overview
of the issue at hand, I will concentrate on some recent (and some not so recent)
developments which from a methodological point of view offer new insight into the
comparison of pricing mechanisms between insurance and finance. The paper should
very much be viewed as work in progress.

2 The basics of insurance pricing

Any standard textbook on the mathematics of insurance contains the definition of
a fair insurance premium and goes on to explain the various ways in which premium
principles can be derived, including the necessary loading. See for instance Bowers
et al. (1986), Buhlmann (1970) and Gerber (1979). The former gives a most readable
introduction to the key issues of insurance premium calculation in a utility—based
framework. In Bowers et al. (1989). p. 1, the following broad definition of insurance
is to be found.



An insurance system is a mechanism for reducing the adverse financial
impact of random events that prevent the fulfillment of reasonable expec-
tations.

Utility theory enters as a natural (though perhaps somewhat academic) tool to
provide insight into decision making in the face of uncertainty. In determining the
value of an economic outcome, represented as a random variable on some probability
space (2, F, P), the ezpected value principle leads at the fair or so—called actuarial
value EX where E stands for the expectation with respect to the (physical!) mea-
sure P. Clearly inadequate as a premium principle (one should be prepared to pay
more than EX), a utility function u enters in the premium-defining equation

u(w —II) = E(u(w — X))

where w stands for current wealth, II for the premium charged to cover the loss X
when u is our utility. That means, u is an increasing twice differentiable function
on R satisfying u' > 0 (more is better) and u"” < 0 (decreasing marginal utility).
Through Jensen’s inequality, the concavity of u immediately leads to

II>FEX

for our risk averse decision maker. Note that the fair premium EX is obtained for
a linear utility. Similar considerations apply to the insurer who has utility v say,
initial capital k£ and collected premium © covering the random loss X, then

v(k) =E(w(k+0© - X)).

Again one easily concludes that
©>EX.

An insurance contract is now called feasible whenever
I[I>0>FEX.
Bowers et al. (1989), p. 10 summarise:

A utility function is based on the decision maker’s preferences for various
distributions of outcomes. An insurer need not be an individual. It may
be a partnership, corporation or government agency. In this situation
the determination of v, the insurer’s utility function, may be a rather
complicated matter. For example, if the insurer is a corporation, one of
the management's responsibilities is the formulation of a coherent set of
preferences for various risky insurance ventures. These preferences may
involve compromises between conflicting attitudes toward risk among the
groups of stockholders.



By specific choices of v (and/or u), various well-known premium principles can
be derived. See for instance Goovaerts, de Vylder and Haezendonck (1984) for
a detailed discussion, where also other approaches towards premium calculation
principles are given.

a) The net-premium principle and its refinements are based on the equivalence
principle yielding © = EX. Resulting principles are:

~ the expectation principle
O=EX+0EX,;
the variance principle
© = EX + 6 Var(X);
the standard deviation principle
© = EX + §(Var(X))'/?;
the semi-variance principle
©=EX +J0E((X -EX)*) .

The above principles can also be linked to ruin—bounds over a given time
period and indeed, often the loading factor is determined by setting sufficiently
protective solvency margins which may be derived from ruin estimates of the
underlying risk process over a given (finite) period of time.

b) Premium principles implicitly defined via utility theory. Besides the net-
premium principle (linear utility) the following example is crucial:

— the exponential principle

0= % log E (eax)
for an appropriate § > 0. The utility function used in this case has the
form
u(z) = —e%*

referred to as the exponential utility function describing a model with
constant risk aversion 6 or constant risk tolerance unit §71.



c) A further interesting class of examples, akin to Value—at—Risk measures in
finance, are the so-called quantile principles. Suppose our loss variable X has
distribution function F. Define the (generalised) inverse of F by

Fo(y)=inf{zeR: F(z) >y}, O0<y<l.
Then the (1 — €)—quantile principle corresponds to
©@=F"(1-¢).

For € | 0 we obtain the probable mazimal loss (supposing that F' has finite
support). Though this risk measure is crucial in most Value-at-Risk based
risk management systems in finance (see for instance Basle Committee (1996)),
recent work by Artzner et al. (1996) shows that as a risk measure, © = F*<(1—
g) fails to posess the crucial sub-additivity property defended in the latter
paper as a key property for a viable risk measure.

d) A principle gaining increasingly in importance from a methodological point of
view is the time—honoured Esscher principle
E (Xxe™)
E (%)
for an appropriate 6 > 0. The latter can be obtained in various ways, for
instance using a minimisation argument on a specific loss function (see for
instance Heilmann (1987)). An economic foundation for the Esscher principle,
using risk exchange, equilibrium pricing and Borch'’s theorem (Borch (1960))

has been given by Bihlmann (1980). An interesting generalisation of the latter
paper is Buhlmann (1983). We shall come back to the Esscher principle later.

Besides the above justification of the various premium principles, an alternative ap-
proach would be to view © as a real function on a space of random variables (or
even on a space of probability distributions) and then specify properties of © which
we want a premium principle to posess. Typically some form of homogeneity and
additivity is called for, further properties relate to convexity, iteration, order preser-
vation and robustness. Without entering into details, see for instance Heilmann
(1987), p. 136-137, mainly the exponential, standard deviation and variance prin
ciples get strong support across numerous publications. Hans Buhlmann proposes
as pragmatic solution, to use the standard deviation principle on the total portfolio
and redistribute the resulting premium to the individual risks by using either the ex-
ponential or variance principle, see Buhlmann (1984). The paper by Artzner et al.
(1996) referred to above proposes a similar axiomatic approach towards financial
Value-at-Risk.



So far it seems that we are far away from the pricing mechanisms now standardly
used in finance. It pays however to read the following remark in Bowers et al. (1989),
p. 16 (indeed their Section 1.4 is well worth looking at in detail):

In a competitive economy, market forces will encourage insurers to price
short-term policies so that deviations of experience from expected value
will behave as independent random variables. Deviations should exhibit
no pattern that might be exploited by the insured or insurer to produce
consistent gains. Such consistent deviations would indicate inefficiencies
In the insurance market.

To someone working in finance, this sounds familiar! Before embarking on this
familiar theme let me stress that the premium calculation discussion from an insur-
ance point of view would now have to address credibility theory as a means towards
differentiating premiums within a non—-homogeneous portfolio. We shall not pursue
this route here; see for instance Goovaerts et al. (1990) and the references therein
for a first presentation.

3 Pricing in finance

Stepping now from the insurance textbooks to the (mathematical) finance ones, one
is immediately struck by the methodological change from an underlying probability
space

(Q,F,P)

to a so-called filtered probability space

(% F, (F)iso  P)

where (F;) is an increasing family of F-sub—-o-algebras representing the history
of (or information contained in) the past and present of some underlying finance
process. The point I want to make is not the abstract mathematics present in the
above, much more | would like to stress the word

Information!

Especially when it comes to differences between pricing in finance and insurance
it is exactly the description of the information available in the underlying market
which becomes crucial. Before we look at some examples, first consider the typical
Ansatz of no-arbitrage pricing. Our risk X in the previous paragraph typically
becomes a contingent claim which, in the finite horizon case [0, T], T being maturity,

corresponds to X is Fp—measurable. Hence X is determined by the underlying
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process for time values up—to and including, but not beyond, T. If we denote the
underlying process by (S;)y<,<r and consider as an example the European call with

strike K and maturity T, then
X=(Sr-K)*.

This random variable is akin to an excess-of-loss reinsurance treaty with priority K.
Another example, especially relevant in the interplay between insurance and finance
Is the Asian option with strike K, i.e.

1 (T +
X_(-:,-,/o Sudu—K) ,

this time similar to the familiar stop-loss treaty in reinsurance. As in the insurance
case, we could start pricing these claims using the actuarial premium principle EX,
i.e. the expectation under the physical measure P. In the insurance case, one would
use ruin arguments to justify a loading factor as briefly explained in the previous
section. In the finance context, the whole argument against using EX as a premium
Is based on the notion of

no-arbitrage!

By now so much has been written on the subject that it is hardly possible even to
begin a discussion having a reader in mind who wants to learn new things! Look at
Cox and Rubinstein (1985) if you start from zero, move on to Hull (1993) to become
more of an expert. If the lack of mathematics bothers you, sharpen your French and
plough through Lamberton and Lapeyre (1991). After you have finished I'll tell you
that an English edition is in the press. Never leave Duffie (1992) far from your side.
Finally if your hunger for mathematical precision concerning sentences like “certain
statements about the (non-) existence of free lunches are basically equivalent to
...~ 1s not yet stilled you must look again at your favourite textbook on functional
analysis and read the fundamental paper by Delbaen and Schachermayer (1994).
After all of this we know how to correctly price the above contingent claims in a no-
arbitrage framework, namely the correct value at time t of X with risk—free interest
rate r is
v =E? (e"T0X | F,)

and the premium (to be charged at time t = 0) becomes

vo=E? (e7TX) . (1)

For notational convenience we have used a constant risk free rate r. We could have
used a more general (stochastic) model for r resulting in a value at time t

EQ (exp {—/tTr(s) ds}X |}}) .
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The main point is not the r, which is also there in the actuarial case though I did
not make it explicit. The main point is the Q: we calculate the fair (no—arbitrage)
premium also as an expectation but with respect to a new probability measure Q!
The risk neutral probability measure Q changes the original measure P in order to
give more weight to unfavorable events in a risk averse environment. In financial
economics this leads to the concept of price of risk and in insurance mathematics it
should explain the safety loading. The theory now tells us that in nice cases Q is the
unique P—equivalent probability measure which turns (S;) into a martingale. That
martingales enter is not surprising, | could also have brought them to bear in the
previous paragraph. What is surprising however is that they appear in a canonical
way intimately linked to the economic notion of no—arbitrage. The latter is by now
folklore and does not need further discussion here: besides all the references above
you may find Varian (1987) entertaining.

In order to work out the price quoted under (1), we need to get hold of Q. At
this point we have to look more carefully at the meaning of nice cases. Two such
cases are the binomial tree model and geometric Brownian motion, in finance often
referred to as the Cox—Ross—Rubinstein, respectively Black—Scholes model. The
thing that makes them nice is that they are complete models. The latter means that
any contingent claim X can be attained through a self—financing trading strategy,
mathematicians would say that X has to satisfy an 1t representation with respect
to (S). A very readable account on this is Jensen and Nielsen (1995). From the
introduction to the latter paper | have borrowed the comment below.

Theories and models dealing with price formation in financial markets are
divided into (at least) two markedly different types. One type of models
is attempting to explain levels of asset prices, risk premium etc. in an
absolute manner in terms of the so—called fundamentals. A crucial model
of this type includes the well known rational expectation model equating
stock prices to the discounted value of expected future dividends. Another
type of models has a more modest scope, namely to explain in a relative
manner some asset prices in terms of other, given and observable prices.

It should be clear from the discussion so far that the present section adheres more to
the latter approach, whereas the former leans more closely to the actuarial approach
of the previous section, though the difference between both is not so sharp as | make
it sound. Let us now return to the needed notion of nice cases. In summary, the
theory of no-arbitrage leads to linear pricing functionals. If our market is such that

a) we have sufficiently many basic building blocks in the market so that new
assets can be represented as linear combinations of these building blocks, and
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b) these building blocks have a unique price,

then the market is termed complete. If not, the market is incomplete. In the former
cases (completeness) prices are unique (Q is unique) whereas in the second case
(typical in insurance) without further information on investor specific preferences,
only bounds on prices can be given (Q is not unique). This brings us to the main
observation:

Within the no-arbitrage framework
nice cases = complete markets!

See Jensen and Nielsen (1995) for some elementary examples of a complete market
and no arbitrage, a complete market and an arbitrage opportunity and finally an
incomplete market with no arbitrage opportunity. Besides the Cox—Ross—Rubinstein
(binomial) and Black-Scholes (geometric Brownian motion) models, further nice
cases (complete models) for instance include

~ multi-dimensional Brownian motion and some special types of diffusions,
— (Nt — At) ;> With (V) a homogeneous Poisson process with intensity A, and
— square integrable point process martingales (Nt - fot As ds)DO.

For remarks on this and further references, see Embrechts and Meister (1995). The
not so nice (incomplete) cases typically occur as

— stochastic volatility models, and

— processes with jumps of random size (e.g. stable processes, compound Poisson
processes, jump diffusions).

For the latter models, in general no unique martingale price exists and holding an
option is a genuinely risky business. If pricing is for instance imbedded in a utility
maximisation framework, then a unique measure emerges in a very natural way. See
for instance Davis and Robeau (1994), Embrechts and Meister (1995) and references
therein. By now a must for all interested in incomplete markets is the so-called
Follmer—Schweizer—-Sondermann approach based on the minimisation of expected
squared hedge error. See Follmer and Sondermann (1986), Follmer and Schweizer
(1989) and the interesting discussion by Dybvig (1992).



4 Back to insurance

At the Bowles Symposium on Securitization of Risk, Georgia State University, At-
lanta (1995), Morton Lane (see Lane (1996)) brought all of us methodologists back
with their feet on the ground by saying:

There is no right price of insurance; there is simply the transacted market
price which is high enough to bring forth sellers, and low enough to induce
buyers.

Though pragmatic in nature, it sounds a bit like the no—arbitrage (or better said
the efficient market) paradigm. So wouldn'’t there be a way to solve the following
problem:

Find a martingale approach to premium calculation principles in an arbitrage-free
market!

This is exactly the title of a paper by Delbaen and Haezendonck (1983) which
both finance experts and actuaries (of the third kind, dixit Buhlmann (1987)) are
strongly advised to read. A further important paper in this context is Sondermann
(1991). The former paper starts from the basic underlying risk process (over the
finite horizon [0, T])

N
X(N)=> X, 0<t<T,
k=1

where (X,) are iid claims with common distribution function F, (N,) a homogeneous
Poisson process with intensity A > 0 so that

Ny=sup{neN:T1+---+T, <t}

where the (T}) are iid with Exp(A) distribution. The random variable T denotes
the (random) occurrence time of the kth claim X;. We neglect for the moment all
IBNR effects. The processes (X) and (T,) are assumed to be independent.

With the above definition X (N,) becomes a compound Poisson process with dis-
tribution

o~ —At ’\tk *
P(X(Nt)Sm)=’§]e’\£-E!l-F"(x), z>0,

where F** denotes the kth convolution of F, i.e.
FR*@)=P(Xi+ -+ Xs <1).

Suppose now that at each time t the company can sell the remaining risk of the period
]t, T] for a given (predictable) premium p, hence the underlying price process (S)

has the form
S,=9t+X(Nt), OStST
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Hence the company’s liabilities S, at time t consist of two parts: first the part
X (V) of claims up to the time ¢, and second the premium O, for the remaining risk
X (N;) = X (N) (unknown at time t). Delbaen and Haezendonck (1989) at this
point conclude:

The possibility of buying and selling at time t represents the possibility
of “take-over” of this policy. This liquidity of the market should imply
that there are no arbitrage opportunities and hence by the Harrison-
Kreps theory (Harrison and Kreps (1979)) there should be a risk neutral
probability distribution Q such that {S;: 0 <t < T} is a Q-martingale.

If one further imposes that
6,=0T-t), 0<t<T,

where 6 is a premium density, then one can show that in sufficiently many reinsur-
ance markets, the linearity of the premiums implies that under Q the risk process
{X (M) : 0 <t < T} remains a compound Poisson process. The basic solution then
reduces exactly to those equivalent measures Q which preserve the compound Pois-
son property of {X (IV;) : 0 <t < T'}. Within this no-arbitrage-insurance context,
a viable premium density then takes on the form

0o = E? (X (V) = ES (V) E? (Xy) , (2)

resulting both in a change of claim-size as well as claim—intensity of the underlying
risk process. Under certain measurability conditions, those ()-measures which give
rise to such viable premium principles take on the following form (formulated in
terms of distribution functions)

1
E (exp {8 (X1)})

where 8 : Rt — R is increasing so that

F(ﬂ)( ) =

/ ﬂ(y)dp( ), >0,

E(exp{B(X1)}) <oco and E(X;exp{B(X1)}) < .
The resulting premium density fq(s) then satisfies
0, = E (N1) E(X1) < g < o0,

hence taking satefy loading into account.
Special choices of 3 now lead to special premium principles, all consistent within
the no-arbitrage set-up. Examples are (see (2) for the notation used):
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a) f=a >0, then
EC® (N)) = e*E(N;) = e,
E9P) (X)) = E(X,) (ezpected value principle);
b) B(z) =log(a+bz),b>0and a=1—bFE(X;) >0, then
EQWB) (N) = A,
E?®) (X)) = E(X,)+bVar(X,) (variance principle);
¢) B(z) =az —logE (e"‘xl), a > 0, then

E°® (N)) = A,

E (X, exp{aX1})

B X)) = plep faxa))

(Esscher principle) .

For further details on the above approach see Delbaen and Hazendonck (1989);
Meister (1995) completes the proof of the main result in the latter paper, generalises
the approach to mixed Poisson and doubly stochastic Poisson processes and applies
the results obtained to the pricing of CAT—futures. A summary on the latter is to
be found in Embrechts and Meister (1995).

5 Final discussion

As we have seen above, in a sufficiently liquid (re-)insurance market, classical
insurance-premium principles can be reinterpreted in a standard no-arbitrage pric-
ing set-up. The variety of premium principles used is explained through the inherent
incompleteness of the underlying risk process in so far that a whole family of equiv-
alent martingale measures exist. First of all, the necessary liquidity assumptions
imposed may at present be rather unrealistic, definitely so in the case where single
catastrophe risks for instance are to be priced. The introduction of CAT—futures by
the Chicago Board of Trade in 1992, together with its new generation of PCS-options
aims at offering such liquidity. Though being just a first step, | am convinced that
the resulting securitisation attemps for insurance risk will eventually yield markets
where the methods briefly discussed above will become applicable. Various impor-
tant issues | have not addressed, as there are the secondary market problem, the
resulting issue of risk-adjusted capital, the overall problem of securitisation of in-
surance risk, the emergence of all-finance products etc. No doubt other papers
presented at this conference will competently discuss some of the above problems.
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Especially the paper by Phillips and Cummins (1995) and the references therein
should be consulted for a lot of interesting ideas. | would like to end with a brief
summary of some further ongoing research which I deem to be relevant.

First, a key question concerns the choice between working under the physical mea-
sure P or under the (or in the incomplete case an) equivalent martingale measure.
When it comes down to pricing simple risks or products in clearly iliquid insurance
markets, the physical measure P gives us an objective description of underlying
randomness. This quickly gives rise to interesting methodological questions. As an
example, take the pricing of CBOT CAT—futures. Suppose X (N(t)) now represents
a homeowners pool’s losses over a period [0, t]. A key component in the pricing of
a CAT—future amounts to estimating distributional properties of quantities like

+
L= (200 _ k) @)
cE(X(N(1)))

for some strike (loss-ratio) K and loading factor c. Various approaches exist, includ-
ing no-arbitrage pricing using a mixture of a geometric Brownian motion and a ho-
mogeneous Poisson model (Cummins and Geman (1995)), equilibrium pricing based
on a counting process model (Aase (1994)), utility and risk minimisation pricing
based on the general class of doubly-stochastic Poisson processes (Meister (1995)),
pricing using so-called implied loss distributions (Lane (1995)) and finally actuarial
pricing using moment bounds on the underlying loss ratios (Brockett, Cox and Smith
(1996)). In non-life insurance, the risk process (X(N(t))) typically exhibits heavy-
tailed behaviour for the claim-size distribution F (see Embrechts, Kluppelberg and
Mikosch (1996) for a comprehensive discussion on this), moreover, the pool con-
struction makes the claim intensity large so that in order to price L,in (3) under P,
one needs estimates for

E(L)= —r

o0
cE (X (V) [/E(X(M»
Here v = K¢ — 1 > 0. Letting t — oo in (4) one is eventually faced with estimates
of the type

P (X (N) - E(X (V) > z) dz. (4)

P(Zy+ 4 Zypy > z(t))

for t — oo where the Z;s are heavy—tailed iid random variables and both n(t) — oo,
z(t) — oo. This is precisely the set—up encountered in large deviation theory but
under the non-standard assumption of heavy-tailedness (e.g. Pareto or lognormal
distributions). For further details, see Embrechts, Kluppelberg and Mikosch (1996).

A further, always recurring theme in the realm of actuarial versus financial pricing
of insurance is the Esscher pricing principle. Originally brought into insurance in
order to approximate the total claim-size distribution

P(X(N(t))<z), z>0, 5)

12



especially for large values of x, the so-called Esscher transform (also referred to as
exponential tilting) now plays a fundamental role as an actuarial pricing mechanism
in finance. Whereas in the estimation of formulas like in (5) only an exponential
transformation of the underlying distribution function F of the claim-sizes is needed
(see for instance the excellent Jensen (1995)), when it comes down to the pricing
of derivatives in insurance and finance, the Esscher transform has to be defined on
stochastic processes. A very readable account is Gerber and Shiu (1994) where the
Esscher transform is defined for exponential of Lévy processes (i.e. processes with
stationary and independent increments). Under the Esscher transformed probability
measure, discounted price processes are martingales, hence no-arbitrage prices can
be calculated. Various discussants to the above paper stress that, in the complete
case, the Esscher price is just one of many viable prices. A key question for further
research is then: what makes the Esscher price special when it comes to pricing under
infinitely many equivalent martingale measures? New results concerning partial
answers to this question are appearing. Some examples are:

a) In Meister (1995), it is shown that both in an exponential utility maximisation
framework as well as in a general market equilibrium set-up, the Esscher
price occurs as the unique solution, i.e. the unique no-arbitrage price, in the
incomplete market of a compound Poisson risk process however constrained
by utility or equilibrium considerations.

b) In Delbaen, Buihlmann, Embrechts and Shiryaev (1996(a)), the notion of Es-
scher transform is generalised to conditional Esscher transforms which allow to
apply the exponential tilting technique to a general class of semimartingales.
A for insurance relevant version of the above in discrete time is Delbaen, Biihl-
mann, Embrechts and Shiryaev (1996(b)).

c) We already discussed that in the incomplete case, uniqueness of a pricing
martingale measure can only be achieved through imposing certain optimality
conditions. This leads to possible candidates like the minimal martingale mea-
sure of Féllmer and Schweizer (1989) and the variance-optimal measure of for
instance Schweizer (1995). An obvious question is now: how does the Esscher
pricing relate to the above constrained pricing mechanisms? An important
paper giving a partial answer to this question is Grandits (1996). The main
point of the latter paper can be summarised as follows. First, the L’theory
traditionally used in order to construct risk minimizing measures is generalised
to L? for more general p leading to a so—called p—optimal measure. If the latter
converges to a martingale measure for the underlying process as p — 1, then
the limit point must be the Esscher measure!
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The above points clearly show that concerning the Esscher transform there is much
more available than first meets the eye! Further results are to be expected in the
near future.

In the introduction | promised that the paper would very much be on work in
progress and not a complete overview. As a consequence, | have left out many
relevant references and approaches; this should not be interpreted as an ordering of
importance. As a matter of fact, | most strongly believe that financial as well as
actuarial pricing of insurance products will increasingly involve more sophisticated
statistical methodology. Much more than at present is encountered within the realm
of finance. A discussion of some of these methods, essentially related to extremal
events are for instance to be found in Embrechts, Klippelberg and Mikosch (1996)
and references therein. It has been common belief that actuaries have to learn from
finance specialists when it comes to pricing and modelling the asset side of their
books. Whereas this undoubtedly is true, at the same time | would strongly advise
finance specialists to have a closer look at some of the recent developments within
the actuarial world. As always, a bridge can be walked in two directions. | very
much hope that, besides the existence of a financial bridge to actuarial pricing my
summary will also have indicated that there is something like an actuarial bridge
to financial pricing. As always, the truth will lie somewhere in the middle, the
developments taking place right now make me believe that we are converging steadily
to this unifying theory.
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