BACKTESTING USING A GENERALISATION

OF THE TRAFFIC-LIGHT-APPROACH
Gerhard Stahl*

Abstract: In an important regulatory innovation the Basle Commitee on Banking
Supervision has allowed for banks to use their own internal models - so-called
‘alue-at-Risk (VaR) models - for setting capital requirements to hack their trading
activities. In order to validate VaR models a quality check has to be run. This
backtesting exercise is also a cornerstone in the regulatory framework for internal
models.
‘This article reviews both current backtesting methods as proposed by regulators
and those of practitioners as well and furthermore employs some refinements of
current methods.
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1. Introduction

Valne-at-Risk (VaR) models have been accepted by banking regulators as tools for
setting capital requirements for market risk exposurc. The basic idea hehind the
usc of these miodels for internal decision making process and the sctting of capital
requirement purposes is to caleulate an upper limit for price movements in the
underlying instruments (i.e. the market risk) and derive from this figure an upper
limit for the risk of loss inherent to a position, which could be realised within
a given prespecified probability, called level of “confidence”, for a fixed period
of time (holding period). An in-depth description of the theory of VaR-models
is given in [1] and [2]. Many banks that have adopted an internal model-hased
approach ta market risk measurement routimely compare daily profits and losses
with model generated risk measures to gauge the quality and accuracy of their
risk measurement systems. This process known as backtesting is not only a useful
exercise per se, but also a cornerstone of the BASLE COMMITTEE ON BANKING
SUPERVISION (BIS) framework for internal models, as described in [3]. As a
technique for evaluating the guality of a firm’s risk management model, backtesting
continues to evolve, This paper consists of § sections. After some preliminary and
introductory remarks in scction 1 and 2 section 3 is devoted to review {4], [5],
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(6], [7], mirroring the state of current research on backtesting. The second part
is separated Dy section 4 and section 5. Tn section 4 we review and define some
honparametric tests, which give rise to generalisations of the BIS: backtesting rules.
In section 5 we present sone tools of exploratory statistics order to compleinent
and strengthen the Jugdement based on elassical inferential backtesting procedures
of the preceding section.

2. Notation and Motivation

Consider the simplest case of a linear portfolio, this means, that the potential
change in the market valuo of the portfolio is,

N
e = E Wi Tie = wyry,
i—]

where uy = (w Lty ) denotes a vector of portfolio weights, i.c. the CXpOSILe
of the partlolio to risk factor i and +; = (r1ee - S rae} denotes a vector of risk
factors or assets: wnry € R As usual, the components of » are relative {or
logarithinic) price changes of the underlying instrnments, Subseript ¢+ denotes a
diserete (daily) time index and ' the transpose of vector 1.

In the context of VaR models some, may be even all, of the tollowing assuimp-
tions are nsually encountered:

Al: The portfolio consists of linear or linearised
instruments.

A2: iy assumed, that »; is o stationary
Gaussian process with mean vector ZECTO,
eg. r. ~ N(O,5,) .

A3 The realizations of reoave gid.
Adr The random variables e are independent.

Assumption Al implies that the total risk of the portfolio is Just

o} = w,Z o, (1)

As an immediate eonsequence of A2, x, is a univariate normally distributed random
variable

My~ N(ﬂ,af).
We denote with h, and H, the density and the cunwlative distribution function
{cdf} of any - not necessarily normally distributed - random variable 7,. The VaR

of m , denoted by v, « 18 defined as the a-quantile of the random varjable ™, Lo
the root of

/ he(—z)dr = o,

9]

where o is a given leve] of coufidence, the BIS demands a 90% -level. OFf course,
e is In general not known and has to be estimated from data. Togethor with the
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specific VaR models there are a lot of natural estimates, in the following denoted
lyy }A;.t and H, respectively. Given some estimate fu or H ¢, we may calculate &, the
estimate of v,. In the frameworl of the BIS® yules the estimates have to he hased
on 1" > 250 observations, where the latest abservation is sampled at thme t — 1.
The observed trading loss at time £ is denoted by l, ic. y = m(w).

We want to stress, that any kind of VaR caleulations depends on assumptions
closeley related to ours. From a general point of view Al reads as an assumptiou,
that assures that the observed P&L are realisations of the P&l forecast, the so-
called clean hacktesting, If nonlinear instruments are included, the details relating
used approximations of price functions and the obscrved prices deserve deeper con-
siderations, We mention furthermore, that Al still covers a number of impartant
instruments like B swaps, bonds, FRNs, FX-forwards, FRAs, cwrency swaps and
options with small gamma. Hence, linear portfolios might serve as a proxy, if the
nou-linear instruments do not contribute too much risk for portfolio at hand.

It A2 is read in a flexible way, it covers notl only the unconditional ganssian
framework for the innovations of a {multivariate) random walk model, which fails
to fit most financial market data. This is especially true, if the level of time
aggregalion is beyond two weeks, see [8] for examples in FX market. Readers, that
are funiliar with conditional models to capture the phenomena of leptokurtosis
and heteroseedasticity, see (9], might switch to conditional normal distributions.

Besides these two equation models an approach hased on elliptically symmetric.
distributions, ¢.f. [11], is also worth to be considered. These models generalise the
nornal distribution to a class of transformation models, keeping many calenlation
vules valid. An application of these models is given in [1], where mixtures of normal
distributions ave fitted to the innovations. ‘

Assuption 4 is severe in respect to backtesting purposes. The independence of
the 7 is clenrly an important statistical premise, but usually violated in practice.
This may be explained by the weights w, that depend in general on the estimated
cavariance matrix through some optimizing process. In this case, the estimales @,
tend to be biased. As a simulation study in [10] has shown, this bias may be ol
considerable amount. A second source also respousible for correlation of §y, 13 the
persistence in the estimates E‘],, ;

In addition to independence the backtesting is sharpened by day by day chang-
ing portfolio weights 1. From (1) we conclude that the weights wy, act as a (linear)
transformation on N ((,Z,). This has the important implication, that the distri-
butions &, of 7, are not time invariant, i.c.

£ H, for t+#s (2)

Aside frow the assmmptions mentioned above, practitioners neglect estimation
arrors by assuming inplicitly

L1

T, resp. H = H,. (3)

f.:

Such identifieations might be justified by the means of asymptotic theorems as
the strong law of large muubers, but the investigations of [10] and [13] indicate,
that this may be very optimistic in the field of VaR models. To summarise so far,
backtesting is complicated by the following obstacles:
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1. the variables 7, are in general not identically distributed,

2. the variables m; and the estimators ¥, are not independent, they are autocor-
related,

3. the involved distributions of m, and ry arc estimated.

In the following we refer to these difficultics as the problem of ageregation,
independence and estimation error.

3. Previous Research on Backtesting

The fundamental critique of {3] on various backtesting methods hits parametric and
nonparametric VaR-models as well. It’s emphasis is put on parametric VaR-models
and on such backtesting methods which are based on various likelihood ratio {LR)
statistics that use observations from a Bernoullian process, where A4 is assumed.

Fovr given T and o the probability to observe a proportion z = #(l: > 0,),
where (I, > 4,) is read, the number of {¢ 's greater than vy, is

T .
P(X=z)= ( )a”(l )
€T
By the Lemma. of Neyman and Pearson I13] the statistic

log A(z) = 21og ((2/T)*(1 = /7)"~) ~ log (0 (1 - ap)*~=))
defines a uniformly most powerful test for testing

Hy:a>oap against H) :a < ap.

The investigation of the LR-tests’ power is the focus of [5]. We quote only one,
btit typical examnple, where Hy : op = 0.99 is tested against Hy : o« = 0.98 for
T = 255,510,1000. The resulting type IT errors are: 0.749, 0.557 and 0.218. This
seems to he a serious blow against eletentary backtesting strategies. In the light
of such verdicts, there is a need for methods that take all available information into
account. A very iinportant innovation towards this goal is [4], where a generalisa-
tion of the binomial test is proposed and A4 is checked by the BDS-test [16]. This
generalisation employs a test, that is based on the whole forecast distribution and
not just onc quantile, as in the binomial case. The transformed sequence H ()
delivers the probabilistic framework, and solves at the same time the aggregation
problem. It is easily seen, that under Ad,

I, iid U, (4)

where {7 denotes the uniform distribution on [0,1] and I, ;= H,(m). Now, the
diagonal in the unit square may be used as a yardstick to judge the VaR model’s
ACHITACY,

If a VaR model works perfectly, i.e. true and estimated distributions of #; coin-
cide, the ordered pairs IT;, ¢ are scattered around this diagonal, where I1, denotes
a realisation of Il;. Assume, the VaR model works acurrately, then the deviations
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from the diagonal are purely random. Hence, large deviations from this ideal line
are improbable events indicating an imprecise VaR forecast. To measure the devi-
ation, an appropriate distance function 4 on the space of all cdfs has to be defined,
which can be used as a test statistic of a goodness-of-fit test.

Common choices for & are variants of the Kolmogorov-Smirnov's (IKS) supre-
i eriterion D and integral criteria which are connected with the names of von
Mises and Cramér. Let us first consider the supremum criterion of KS. Integral
criteria will be considered in section 4.

Suppose, the random variables Xy, --- X, are iidd F, then the cmpirical cu-
mulative distribution function (ecdf) is defined as

Frry(r) = #(X; < 2)/T, —00 < & < oC.

The Kolmogorov-Smirnov (IK8) statistics

Dyp = SUp | Firy () — F(a)|
D o= sup (Fery(7) — F())
D = sup (F{z) — Fery ()

and Kuiper’s statistic

Ky :=Dj + Dy

are well-known distance measures. Kuiper’s statistic in [4] is preferred to the
statistics of KS-type, in ovder to test the hypothesis

Hy: F(w) == against H): Flx) #x, {5)

where F{x) denotes the edf of TI; and f(z) = 2 is the cdf of U.
A weight function w(z) may be used to capture the relevance of the distribu-
tions’ tails, [4] advocate

w{z) = —0.5n(x(l - z)).

In contrast to the methods in [4] and [5], which are based on inferences from
testing hypothesises, the methodologies in [6] and {7} switch to an estimation frame-
work, under Ad.

The approaches in [6] follow decision theoretic and Bayesian thoughtls as out-
linedt in [15]. These concepts intend to incorporate all information of both objective
and subjective nature, to draw an adequate picture of the visk in arder to make
the best decision. Snch procedures incorporate the information given hy the data
as well as other sources of non cexperimental information such as (asynunetrical)
loss functions and priors on the parameter space ©. The main ideas in [7] arve in-
spired by the work of [17], which is devoted to the problem of evaluating weather
forccasts. The point is to specify a (regulatory) loss function ¢ and an cveut of
interest - in other words a parameter of interest - in order to measure the Vall'y
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accuracy. The accuracy of the VaR forecasts is gauged by how well they minimize
this loss function. The selected quadratic Joss function is defined by

1T
Q:fz2(n—ﬁz)2- (6)
i=1

R, denotes an indicator function of the regulator’s event and P, denotes the forecast
of the event of iuterest, that depends on the estimated distribution of .

4. Backtesting Based on Testing Stochastic Dominance

As shown in the preceding sections the backtesting problem is complex. The si-
multaneous presence of the problem of aggregation, independence aud estimation
crvor, wakes it difficult, to strictly statisfy the assnmptions of the statistical proce-
dures involved. The various measures of aceuracy applied to VaR estimates in [10]
highlight, that backiesting methods solely based exciusively on the 09% quantile
tail, to pive relinble results. In this aspect we agree with the criticism in [4] and [5].
Therefore, we pursue such inferential methods witl a sound statistical hasis anc
statistics that allow for a meaninglul interpretation within the field of risk manage-
ment, Such statistics could be analysed by means of exploratory and conlirmatory
techniques, [18] and [19].

One of risk management’s cornerstones is historical volatility. ‘This statistical
measure expresses Lhe riskiness of a portfolio by a single figure, usually the standand
deviatiou. The standard deviation is a special case of the more general concept
of a random variable’s dispersion around the mean. To introduce the latter, wo
consider two symmetric variables say ¥ and X with mean i and n respectively.
In the context of VaR models we may assume ¢ = 5 = 0, and say that ¥ more
dispersed than X, if

PX|>0 <PV >1) forall ¢ (7)

A shorthand notation for (7} is |X| < |Y]. If furthermorc

X <aV {8)
is fulfilled, we siy, that X is stochastically dominated by Y'; [20] gives a good survey
on this topic. Obviously, the concepts of more dispersed and stochastic dominance
coincide, if X and ¥ are symmetric about zero. In terms of the involved cdfs,
relation (8) is equivalent to (9)

Fx(t)y> Fy(t) forall te R )]

"To tie volatility with dispersion, we introduce a class of general dispersion neasnres
in some detail. Following [21] and [22], we define the functionals

) ={ | [r ] fmmf , (10)

where F'is assumed to he symmetric about j, F', denotes the distribution of | X =g,
A is any probability distribution on (0,1) and 7 any positive number. We focus

570



Stahl G.: Backtesting using a generalisation ...

on two important cases of (10): the standard deviation (v = 2,A = U{0,1)) and
the a-quantile (A assign probability 1 to «, « is arbitrary). Obviously, volatility
and valne-at-risk arve measures of dispersion. As outlined in [21], (7) and (10} are
related by

7(F) < 7{G) whenever Fx{l) > Gy(t) forall tcR (11}

Now, in the light of {11), the concept of stochastic dominance provides a non-
paramectric framework, to Interpret Y as more volatile, and hence more riskier,
than X. This relation can be used, to compare VaR-forecast distributions.

Kuiper’s test statistic is symmetric and rejects those models which deviate too
much {rom the diagonal line, even those, which are based on too conservative
forecasts, From a regulator’s but also from a risk manager’s point of view cantious
and conservative VaR estimates have an intrinsic value. Let us thercfore consicder
a statistician whose risk estimate of 7, is based on a conservative statistical model
(7, that dominates the trie distribution H,.

Golx) < Hy(w) (12)

Let ¢, denote the random variable Gy{m;), and F, its c¢df. Then {12) implies

Cy <ot T, {13)
equivalent to
Fi(z) > .
As mentioned earlier, the I1; are ¢4d 7. Whereas, the random variables ¢y are
T
uol necessarily identically distributed. However their mixture M = 1/T 3 F; siill
t=1

satisfies

M{z) z 2 forall «e(0.1)

i.e, the mixture of cdfs dominating the uniform’s cdf, also dominates x. Under the
assumption that the random variables €, are independent, we consider one-sided
goodness-of-fit tests to measure the agreement of the data with the composite null
hypothesis, that the VaR forecasts are conservative estimates:

Hy: M{z) > x (14)
against the composite alternative

H) : M{x) <2 for some 2 € (0,1)
To run a goodness-of-fit test, we have to define a statistic § that rejects Hy if
the distance of the ecdf Fiy to Hy is too large. Let us first consider the K5-type
statistic

8(F, Fipy) = D7
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We have to solve two problems, in order to run a goodness-of-fit test based on
D7 for (14). Firstly, we have to determine a null distribution Fy for data under Hy.
This is necessary, because Hy in (14) is composite. Secondly we have to determine
the distribution of D% under F. This is achieved with the help of the bootstrap
method {24] applied to non parametric tests [25]. We cstimate £y by

Fo(z) = max(x, Firy(z)) =€ (0,1). (15)

This estitnate Fy € Hy is well justified. It is a nonparametric maximum likelihood
estimate in the sense of [26]. Now, the bootstrap machinery works, in order to
test (14),

We follow [25] and [27] by bootstrapping Dy under Hy, t.e. we calculate
83 = sup(Fry — Fy) (16)

Dy resampling conditionally on Fy, where F(fl.) denotes the ecdf of sample size T
from Fy. Define C3 as the cdf of 53,

Cr(s) = P(S% < s|Fy)

and

ar =inf{s: Cp{s) > 1 - a},

then the bootstrap rejection region for H is Just the area below the graph of

F() - q‘;.

In other words the null hypotlesis is rejected, whenever there is an o ¢ (0, 1),
sucly that

Firy(z) > Fy(x) - g3

For appropriate choices of {c.g.a = 0.01,0.05) we get a generalisation of the
traffic light approach outlined in [3]. When the KS-test is applied with the foeus
on the tails, we encounter its weakness: the constant vertical widths. This makes
the band unnecessarily broad in the tails [29]. We can either apply a weighting
function w(z) within the class of KS statistics or switch to statistics, that are
based on the integral criterion. We continue with the first strategy and consider
the second there after. Natural choices for w(z), that yicld Rényi's type statistics,
are

Fle) — Fr(x
R,;. = sup (—M—(LJ (T)(L))
Flz)>b Floy

or

fty = s (F(:u)u - F(w))) ’
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see [30], [31}. Usually Rényi type statistics yicld narrower confidence bands espe-
cially in the tails of F, which was our erncial aim. Furthermore Ry admits the
interpretation of the maximnal relative error estimating F(x) by Fr over a cvertain
range. RE is a variance-weighted version of D7, The hootstrap applies in the same
manner as outlined above. More details on Rényi’s and related statistics ave found
in (28] and [32].

We focused so far on supremum tests, which exploit only the extreme deviation
between Fr and F.

Hence, these tests have the disadvantage to be sensitive only with respect to the
greatest difference. The family of statistics (for details see [28] and [33]) based on
the integral criterion are a smooth measure of discrepancy. As a typical example
we consider the von Mises statistic

MS = wa(:t;)[F{T] (x) = F(2)]"  da, (17)

where w{ix) is a suitable weight function and v € R*, usually v € {1,2}. As
mentioned in [31], this two-sided statistic (17) is not appropriate for our one-sided
setting. Therefore, we propose a modification of (17) by

MS = T/w(ﬂ:)(max[o,F(T)(a:) - F(x)])" dx (18)

in order to test

Hy: M(z) =z %

against

Hy, ' M(a) <x forall = onsomeinterval [ C{0,1).

Well-known specifications of (17) are: Moses’ test (v = 1, w(z) = 1) and the von
Mises test (v =2, w(z) =1).
In this context we waut to mention Fisher's test [30], [31]

Fir = [ Fy(@)/F@)F ().

which is closely related to Rz. We want to point out, that Fir contains no param-
cter to be determined by the statistician, in contrary to the parameter b in R;C. Of
course, Fip may be modified analogously to (18).

The test procedure is carried out within the same bootstrap framework as out-
lined before. It is to be expected that a test based on M S admits a power superior
to those of IXS-type. .

We conclude this section with some general remarks on the procedures we have
looked at so far. The bootstrap tests above ave closely related to so-called Monte
Carlo tests, see [34], [35] and {36]. The latter refer usunally, but not exclusively
to Monte Carlo simulations in the framework of parametric tests. Bootstrap-tests
are recommended [24], if the alternative hypothesis is composite. We see two
concrete advantages applying the bootstrap. Firstly, it is a problem to determine
distributions of test statistics, if an arbitrary weight function w(z) is involved,
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Secondly, certain ditficulties with estimated parameters [37] of the null hypothesis
may be circumvented.

We further want to stress, that we have not adressed the important problem of
tid assumption. [t seems reasonable that cxceedences of VaR limits are positively
correlated. Under the assumption of positive correlation, it is shown in [38], that
edf-tests and v2-tests reject the true null hypotliesis too often, by confounding a
positive dependence with lack of fit, These results apply to Pearson, Kolmogorav-
Smirnov and Cramér-von Mises type tests. We see two strategies, to overcome
the difficulties cansed by dependence. Firstly, to find a model, describing the
dependence. Secondly, to rule out the dependence with methods of moving blocks,
see [39], [40], [41), [42]. Our next paper on backtesting will be devoted to these
tapics.

3. Exploratory Analysis and Backtesting

In addition to our remarks with respect to the assnmptions of Va2 calculations we
are coufronted with another kind of problem: the immense dimension of the pari-
folio. In practice, we encountered implemented VaR models meluding between 1350
and 4000 risk factors. Thougl it is expected, that such high dimensional models
still capture important features and structures of the data, the nominal levels of
significance of caleulated forecast intervals should be interpreted with cave.

Taking these eritical points together, we sce a strong indication for applying
exploratory miethods [18] in addition to the infercnce procedures considered in sec-
tion 3 and 4. Exploratory methods take the data as such without further probalistic
assumptions.

The problem, to evaluate weather forecasts [45] is closely related to the back-
testing problem of VaR models, These problems coincide - at least in principle -,
if the target vartable is continuous, but differ in the following detail.

Metcorologists make probability statements ahonut forecasted events, such as:
with a probability of 10 %, tomorrows temperature is hetween 25°C' and 2620,
Hence, they deal with two distributions, the forccast distribution aud the distyibuy-
tion of the observations. Applying appropriate grids to the variable’s domain loads
to vE-tests, an tuportant tool in the area of weather forecast evaluation [45], [46].
It the forecast distributions of VaR were standardised, these methods could be also
applied, the analysis of interplay between the two distributions would give valu-
able insiglits [45]. Surprisingly, meteorologists plot so-called reliability diagrams.
In such plots, the observed relative frequency of a hit within each forecast proba-
hility category is plotted against forecasted probability, with the 45° diagonal line
representing perfect reliability [47]. But this is nothing else but an exploratory
interpretation of what we have done in the last scction. Purther graphical applica-
tions are P-P and Q-Q plats [43].

It is recommended to apply the bootstrap as a confirmatory mean in an ex-
ploratory framewaork. For example [44] suggests to use bootstrapping to comple-
ment the edf, because hootstrapped estimates of bias an standard deviations of
quantiles can help the decision maker locate the order statistics ahout which he is
oSt uncertain.
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We close onr tentative remarks on exploratory backtesting methods by propos-
ing a score [unction, which wirrors the average amount of forecast exceedances.
Tle statistics in [4] and [5] and those introduced in section 4 are based on observed
percentiles given by the aggregation-step (4),

Hi (L),

These statistics lost an important inforination given in the difference resp. the
ratio

iy — 1 resp. wfl

about the amount of how much the observed loss surpasscd the VaRl forecast.

With Py we denote a sample of T observed percentiles g, = Fi{1). With pr =
{piy. - pery) we denote the associated order statistic, the basis ol the edf-tests.
Now, we calculate

&= 7 B,

the VaR of level p(sy at time t. If the ratio

A=/l

is greater than 1, the VaR estimate is conservative at time t, else it fails to e
conservative. We propose the score function:

9

5= " ()

i=1

where ¢ defines a geowetric weighting scheme. A value 5> 0 indicates conserva-
tivisin of the VaR model and a value § < 0 indicates the contrary.

6. Summary

We gave a tonr d’ hdrizon of actual applied and possible future backtesting meth-
ocls. We touched elassical estimation and testing inferential procedures as well as
exploratory methods. We take the point of view that there exists so far no definite
method that hits all purposes. But the whole spectrun of methods should give a
distinctive conclusion about the VaR model’s forecasting quality. Positive results
of a fourty year experience in meteorology for related quostions shiould encourage
us to look optimistically to future backtesting of VaR models. We will apply our
methods to the real VaR data, which were calculated by means of exponentially
weighted and equally weighted observations,
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