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The Second Fundamental Theorem of
Asset Pricing: A New Approach

Rohert J. Battig
Robert A, Jarrow
Cornell University

This article presents a new definition of market completeness that is independent
of the notions of no arbitrage and equivalent martingale measures. Our definition
has many advantages, all shown herein. First, it preserves the Second Fundamen-
tal Theorem of Asset Pricing, even in complex ecanomies, Second, under our
definition, the market can be complete yet arbitrage opportunities exist. This is
important in practice, and stands in contrast to the traditional definitions. Third,
under the assumption of no arbitrage and when used in the standard models, our
definition is equivalent to the traditional one.

Most of modern finance theory is based on the first and second fundamental
theorems of asset pricing. The first fundamental theorem relates the notion
of no arbitrage to the existence of an equivalent martingale measure, while
the second fundamental theorem relates the notion of market completeness
to uniqueness of the equivalent martingale measure [see Harrison and Kreps
{1979) and Harrison and Pliska (1981)].

For econcmies that involve only a finite number of assets, these eco-
nemic notions of ne arbitrage and market completeness are equivalent to
their probabilistic counterparts [see Dalang, Morton, and Willinger {1990Q),
Delbaen (1992), Lakner (1993), Delbaen and Schachermayer (1994), and
Schachermayer (1994) on the first fundamental theorem and Harrison and
Pliska (1981) and Battig (1997) on the second]. For economies involving
an infinite number of assets with discontinuous sample paths, the first fun-
damental theorem has not yet been extended, and the second fundamental
theorem fails. Indeed, Artzner and Heath (1995) provide an example of a
complete economy where there are an infinite number of assets and an in-
finite number of equivalent martingale measures {market completeness but
nonuniqueness of an equivalent martingale measure). Although the math-
ematics generating their counterexample is well understood, the economic
reasoning underlying its failure is not.

The purpose of this article is to propose a new approach to market com-
pleteness that maintains the second fundamental theorem, even in complex
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economies. This equivalence is maintained by redefining the meaning of a
complete market to one that is more basic, and to one that is independent
of either the notions of no arbitrage or equivalent martingale measures.!
As shown below, this new definition is important for understanding the
economic reasoning behind the Artzner and Heath (1995) counterexample.
However, this new definition is also important for practice, as arbitrage
opportunities are often sought in complete markets. This consideration is
impossible under the existing definitions.?

Indeed, under the existing definitions, the notion of a complete market has
been studied by first fixing an equivalent martingale measure [see, Harrison
and Pliska (1981), Ansel and Stricker (1994), Artzner and Heath (1995)].
By the first fundamental theorem, the existence of an equivalent martingale
measure implies no arbitrage opportunities. Thus, in the existing literature,
a complete market must necessarily be arbitrage free.

In contrast, our definition of market completeness is independent of any
particular probability measure. This is an important property.” Under our
definition, a market can be complete and yet arbitrage opportunities exist.
In fact, this measure independence is the key insight of our article, and the
essence of our article's contribution to the literature.

The formulation of our definition starts with a specification of a collection
of events that all traders agree cannot occur, the set of traded assets, and a
set of trading strategies. The trading strategies are kept simple. They consist
of holding only a finite number of assets at any point in time and only a
finite number of trades are allowed over the trading horizon. The trading
dates can be stopping times. The space of potentially attainable contingent
claims is the space of bounded random variables. There can be an arbitrary
number of traded assets, one of which is a maney market account. Traded
assets have prices, and trading strategies have known costs of construction,

The economy cansists of a collection of traders. Each trader assesges
their own personal value to the set of attainable contingent claims.* These
personal values satisfy a minimal consistency condition — any claim that
makes zero payments except on null events has a zero price. We allow both
risk-averse and risk-neutral traders.

Far articles on related tapics see Tarrow and Madan (1997b) and Jarrow, Iin, and Madan (1997). Tarraw,
Jin, and Madan {1997) emplay a similar definition, but only ina static economy. This article can be viewed
as the continuaus trading extension of Tarraw, Jin, and Madan {1997).

Except, of course, far the trivial finite state, finite time economies (e.g., binomial model} where much of
the profession’s intuition for the separation of na arbitrage and market completeness ariginates. Cne way
to think about this article is that it provides the approptiate peneralization of the finite state, finite time
econamy ta mare complex economies, while still maintaining the ariginal intuition.

In fact, Battig (1997} has an example of an econemy where the existence of an equivalent martingale
measure precludes the possibility of market completeness.

The intraduction of traders and their personal valuations is purely for pedagogical purposes. The entire
setup can be done abstractly without the introduction of these cancepts. This comment will become
self-evident in the subsequent sections.
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In our setup, a trader views two random variables (contingent claims) as
approximately equal if the value he assigns to the differences in their payoffs
across states is close ta zero. In the market at large, two random variables are
deemed approximately equal if all traders view them as such. This definition
for two random variables being approximately equal, therefore, is seen to
depend only on the collection of null events. This is a key insight.

A market is said to be complete if all the potentially attainable contingent
claims can be approximated (in the above sense of closeness) via a trading
strategy. Due to the meaning of approximately equal, this definition of
market completeness is independent of the notion of no arbitrage and is
independent of any particular probability measure.

Using this new definition of market completeness, two topological dual
pairs exist: (random variables — personal values) and (trading strategies
— personal values of trading strategies). There is a linear mapping linking
these two dual pairs, that mapping taking trading strategies to random vari-
ables. This mapping has an adjoint. The linear mapping and its adjoint are
the infinite dimensional analogue of a matrix and its transpose. A straight-
farward application of mathematics to this mapping and its adjoint yields
the second fundamental theorem. That is, the equivalence between market
completeness and uniqueness of a valuation operator that prices attainable
claims by their cost of construction.

Under appropriate additional hypotheses, this is equivalent to the unique-
ness of the equivalent (local} martingale measure, thus yielding an elegant
proof of the standard form of the second fundamental theorem. In this con-
text, an equivalent (local} martingale measure is a measure that transforms
the traded assets into (local) martingales and whose null sets are precisely
thase events considered impossible by all traders. Under this definition of
market completeness, the economy considered by Artzner and Heath (1995)
is incomplete, so itis no longer a counterexample to the second fundamental
theorem. It is seen that Artzner and Heath use the wrong definition for the
closeness of two random variables.

In addition, this article studies the relation between our definition of mar-
ket completeness and that used in the existing literature. It is shown that
the two definitions give equivalent characterizations of market complete-
ness when there is only a finite set of assets trading or asset prices have
continucus sample paths. These are the standard structures used in the fi-
nancial economics literature [see Black and Scholes (1973}, Heath, Jarrow,
and Morton (1992), and Jarrow and Madan (1993)].

Hence, the standard technique for proving market completeness — show-
ing the non-singularity of the appropriately defined volatility matrix3 —

* See, for example, Tarrow and Madan (1995) and Battig (1997). In Battig (1997), the volatility matrix
characrerization of completeness is obtained under the new definition of completeness, without reference
ta the standard definitian.
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warks for our definition as well. The two definitions differ, however, in
more complex economies. For mare complex economies, our definition is
shown to be stronger (i.e., our definition of completeness implies the ex-
isting literature’s definition, but the converse is not true).® This distinction
will prove useful as more complex economies involving an infinite number
of assets are explored in the finance literature.”

An outline for this article is as follows. Section 1 presents the model,
Section 2 presents our new definition of market completeness. Section 3
presents the revised second fundamental theorem of asset pricing. Sec-
tion 4 reviews the old definition of market completeness. Section 5 relates
it to the new definition. Section 6 clarifies the Artzner and Heath (1995)
counterexample. Section 7 concludes. Proofs are cantained in the appendix.

1. The Model

This section presents the details of the model. We start with a filtration
F = (F)iefo,1) on a measurable space (2, F) and a collection A of events
in F. The filtration F = (F,),e[0,17 models the evolution of information
over time and the elements of A are events that all traders agree cannot
occur. The events in A are referred to as the null sets.®? A could be the
null sets of a statistical measure P, but it is not necessary to refer to any
measure in the subsequent theary. The trading horizon is continuous, finite,
and represented by the time interval [0,1].

Let A U {A} be an index set representing the traded primary assets.
These assets trade in frictionless and competitive markets. We separate out
one asset, the money market account { A}, for easy reference. Otherwise A
represents an arbitrary {possibly infinite) set of risky traded securities.

The family of price processes for A U {A} is denoted by V =
({ZF)rer0.11}wcaugs) (28 1eefo,1) are adapted cadlag processes with Zf‘ = 1.
Without loss of generality, we set the money market account’s value con-
stant and equal to one for all time z. This is equivalent ta the price processes
(Z%)sepn,1] already being normalized by the (random) value of the money
market account. The analysis proceeds for these normalized price processes.

Traders are allowed to invest in the money market account plus a finite
number of the risky assets in A using self-financing, (stopping time) simple
trading strategies. More precisely, the set of allowable trading strategies is

o

An example is given in Battig {1997).

This is not 2 vacuous or unimportant set of topics. The APT madel of Ross (1976), which contains an
infinite number of assets, 18 one such economy. Markets with price processes having discontinuous sample
paths and continuous densities for jump amplitudes are alse an important class of examples [see Merton
(1976)].

SIfB e Nand A C B, then A € N and N is clased under the taking of countahle unions. We also assume
that the filtration is right-cantinuous and that /7, containg .
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denoted by

My

V=10, (Hqea) | x € R, HE =) h% |l o)y, (1)

i=1

where 0 < 13 < .-+ < 17 < | are stopping times, l¢e coy(t) = 1 if
te(r”,, ¥ and OO[hCI‘WlSC kY € L®(Fr, N) and H® = 0 except for
finitely many a € A.

L™ (,’/’?,ja‘ N) denotes the bounded F.«-measurable random variables. In
L% (F:s, N), random variables differing only on null sets are considered
equal.

In the definition of ¥, x represents the time O value of the entire portfolio.
HY represents the units of asset « held at time ¢ for ¢ € (0, 1] During the
time interval (0, ('], Ag units are held. At time z{* a rebalancing occurs
and the holdings change to hAf. The next rebalancing occurs at time =
when the holdings are changed to A, and so forth until final liquidation at
time 1. Requiring that A} € L%(F,+, ') means that the holdings over the
time interval (z, fﬂ. ;] are bounded and can only be based on information
available at the beginning = of the interval.

Note that a self-financing condition is implicit in our trading strategies
because after time 0 we do not get ta choose the holdings in the money mar-
ket account. Once we decide on the trading strategy (x, (H%) 4 4), the self-
financing condition requires ustohold x+3 " , fo HYdZ2 =Y, 4 HY Z¢
dollars in the money market account at time ¢ € (0, 11.°

The payoff to a trading strategy (x, (H%)qe4) at time 1 is denoted by

1
T (Hees) =5+ 3 [ Hzazs. @

aEA

This represents the initial cost of constructing the portfolio, x, plus the
gains/losses on the risky assets over [0,1]. The sum on the right side of
Equation (2) is finite, as only a finite number of the assets can be held by
the trader at any time. The integral is well-defined since the holdings are
constant for almost all times.!?

We are interested in studying market completeness. Consequently we
need to define the space of potentially attainable contingent claims. We

)

The value of the portfolio at time ¢ is V, = H2* + Zaﬂ HEZY. The self-financing condition is 4V, =

3., HedZe Thisimpliesthat V, = x+ ) fo’ HZdZ¢. Combined, these yield the expression in
the text.
1 Hay .
9 This integral is well defined as J; HedZe = Zi.:] 4’1}'_[(2‘,:. — 27, ) sven if {1%)pea are not
semimartingales.

1223



The Review of Financial Studies /v {2 n 5 1999

restrict ourselves to the set of bounded random variables,'! denoted by
L®(F), N), where, as hefore, two random variables are considered equal
if they only differ on a null set; thatis, onasetin N. The set C = L®(F), N)
represents the space of potentially attainable contingent claims.

[t is possible that the trading strategy operator T defined in Equation (2)
generates random variables which are not bounded and therefore are not in
C.!2 For this reason we restrict the domain of T' ta be

~ —~—

Y=Y n17 O, 3)

and we denote the restriction of T to ¥ by T.

2. The New Definition of Market Completeness

Given the above structure, this section introduces our new definition of
market completeness. The notion we would like to achieve (based on an
analogy to the finite state, finite time model) is that the trading strategies
generate all the contingent claims, that is, the image of T equals all of C.
Note that this definition is independent of the notion of no arbitrage or the
concept of an equivalent martingale measure. It only depends on the null
sets A that determine when two claims are considered identical.

However, we cannot reasonably expect that all contingent claims can
be obtained as outcomes of the class ¥ of (stopping time) simple trad-
ing strategies.’® But it is possible that sequences (nets) of simple trading
strategies could approximate arbitrary elements in C. This generalization
to market completeness is the one we pursue.

To maintain the independence of the definition of market completeness
from the notion of no arbitrage and the concept of an equivalent martingale
measure, the meaning of “approximate” needs to be formulated carefully.

In this regard, denaote by M the space of signed measures on (£2, F))
which assign zero mass to events in A, The set M represents the possible
contingent claims valuation measures held by traders, called “valuation
measures” for short. A trader using the valuation measure g € M assigns

" This assumption is less restoctive than it first appears. Unbounded random variables could be cansidered
in this context by first narmalizing prices by the aggregate value of all traded assets in the ecanomy. Then
the normalized prices Z2 are hounded by construction. This “trick™ has been previously used by farrow
and Madan (1997a) and Sin (1996).

* For instance, suppase 22” i unbounded and take x = 0, H* = | if = e* and identically zero atherwise.

" For instance, in the teaditional Black—Scholes model, any hounded claim X can be represented as x +
L

f; H”x 47, where Z, denotes the deflated stack price (following geometric Brownian motion), x € ft,

1
and HY is an appropriate predictable process making j; HX¥4Z, into a martingale (under the unique

equivalent martingale measure for Z,). Furthermore, x and H are unique and thus choosing HY , which
is nat stopping time simple, gives a claim X which cannot be attained with strategies from ¥.
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to a contingent claim X € C the value

(X, 1) = f Xdp. @)

This valuation measure p € M is identified as belonging to a particular
trader. Under this interpretation, the valuation measure implicitly incorpo-
rates the traders’ beliefs and preferences (risk aversion}.

The set of valuations determined by M has two implicit assumptions.
First, the fact that any o € M assign zero mass to events in A means that
all traders agree on the null events. Second, since the measures are signed,
this means that there can be strictly positive random variables with negative
personal value. For example, the contingent claim 1¢ with E ¢ A could
have a negative personal valuation, thatis, u(E) < 0. The set of nonnegative
measures in M whose null set are precisely A is denoted by M, ;.

For a given trader, represented by a ;0 € M, two contingent claims X
and ¥ can be viewed as approximately equal if

‘f(X—Y)d,u

This criteria states that two random variables X and Y are approximately
equal to trader . € M if he values a elaim paying the differences in their
payoffs across states as approximately zero.

This measure of closeness can be used to define a tapology on C, denated
by t#.!* This topology is trader (measure) dependent. To eliminate the
dependence on a single trader, we endow € with the coarsest topology that
is finer than # for all w € M. We denote this new topolagy by 7.!5 By
finer, we mean that ¢ has all the open sets that are contained in t# for all
@ € M. Soif X is approximately close to ¥ in the new topology t, then X
is approximately close to Y far every trader ;¢ € M. The converse of this
statement for an individual trader is not true. That is, if trader 12 € M views
X ascloseto ¥, other traders may not view it as such and, therefore, X may
not be close to Y in the  topology.

In this topology, two contingent claims are approximately equal if all
traders believe the values of these two claims are close. Hence, this measure
of closeness depends on the entire set of traders {measures) in M and is
therefore independent of any particular trader {measure).

< ¢ for small & = 0.

The topolagy is defined by basic open sets of the form B(X:;e) = (¥ e O | |f(X — ¥idp| < £} for
XeCande > 0.

This new topalogy has anather interpretation. t is the weakest topology on €, making zll the linear
functionals {-, g2}, 0 € M, continuous. Since C is the topological dual of M (endowed with the total
variation norm}, this is the weak? topology on C.
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Finally, prior to our definition, let

1
A = Ix—f-Z[ HXdZZ | (x, (H"}uen) € Y‘ =mT
0

[ T=F.

1
Al f HEdZ2 {0, (H)qer) € Y,
! [ZO [ (0, (H)aen) € ]

acA

I

where A; is the space of claims attainable by trading in the fundamental
assets via stopping time simple strategies, while A denotes the contingent
claims attainable at zero initial cost.

Definition 1. The market is complete if Ay = ImT is dense in C with
respect 1o the topology t.

This definition is independent of the notions of no arbitrage and an equiv-
alent martingale measure. Roughly, it says that the market is complete if,
given an X € C, there is a trading strategy whose time 1 value all traders
(i.e., all 4 € M) consider close to X.

3. The Second Fundamental Theorem of Asset Pricing

This section presents the generalization of the second fundamental theorem
of asset pricing. Prior to this, however, we need to introduce some additional
notation for the valuation of a trading strategy (x, (H%)aca) € Y. For a
teader p € M, this value is given by

(T*u)(x, (H%)aea) =fT(x, (H%)aca)dis. (5)

Equation (5) simply says that a trader & € M values a trading strategy
(x, (H%)aea) by valuing the time | payoff T (x, (H%)4ea) generated by this
strategy.

On the other hand, it costs x dollars to form the trading strategy (x,
(H*)pea). These two values could be different, representing a situation
where the trader’s personal value for a strategy differs from its cost. This is
a type of arbitrage opportunity for the trader. We want to exclude this type
of arbitrage opportunity by considering only those traders p € M whose
values in Equation (5) equal x.

More abstractly, T* can be viewed as an operator mapping an element
i € M into the space y of potential valuations of trading strategies in ¥.
Let mo{x, (H)yea) = x represent the linear functional mapping trading
strategies into their cost of canstruction and denote by Py ,_ the set of
signed measures & € M such that T*u = mg. The signed measures in the
set Py ,_ preclude these simple arbitrage opportunities.
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S A
o@

i

XeC » ,ueM{

T TO)=x+¥ [Hedz: l T4 = [Ty

el

y= (x'{Hﬂ)aed) ey ——p x

Figure 1

Duality mappings between the various sets of values, valuations, and trading strategies

In this figuee, X € C is the set of contingent claim time | values, 2 € M is the set of passible time 0
valuiations (signed measures), AT+ is the set of nannegative measures, (x, (H*).ci) € ¥ is the set of
trading strategies, F. .. is the set of signed measures such that 77 g = mq where To(x, (H o) = x,
Z7 i3 the price pracess far asset o, and X' i5 the set of possible time O valuatians of trading strategies.

The key thearem in our article uses the special topalogical duality that ex-
ists between the various constructs formulated. The linear mapping T: ¥ —
C takes a trading strategy (x, (H®)aea) and maps it into a random varjable.
The space of random variables (contingent claims) C is in duality with the
space of possible values M via Equation (4). Equation (4) gives the price
of a random variable. Continuing, the linear mapping 7*: M — x takes
a particular valuation measure on the random variables and maps it into a
valuation operator on trading strategies. The space of valuation operators
on trading strategies y is in duality with the space of trading strategies
Y via Equation (5).!9 Equation (5) gives the cost of a trading strategy. In
fact, it can be shown that 7% is the adjoint of T. This duality pairing, with
the associated topologies, is a well-studied construct in mathematics. This
duality mapping is illustrated in Figure 1.

From the construct, one can easily obtain the following theorem.

Theorem I (generalized second fundamental theorem of assef pricing).
Let there exist ¢ € P ... The market is complete if and only if Q is unique
in P-[_ I=r

' Formally, X’ is the vector space of (linear} functions mapping ¥ — R generated by f Tdpforallp e M
and mg.
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Proof. See the appendix.

This generalization of the second fundamental theorem states that if there
exists a measure in the set P, .., then the market is complete if and only if
this signed measure is unique.

It generalizes the earlier theorems in two ways. First, the condition that
Q € P, ,_ is a very weak no arbitrage condition, much weaker than that
which appears in the literature [see Dalang, Morton, and Willinger (1990},
Delbaen (1992), Lakner (1993), Delbaen and Schachermayer (1994), and
Schachermayer (1994)]. Second, since the measure Q need not be positive,
other types of arbitrage opportunities can exist under the hypothesis of this
theorem and yet the market may be complete.

4, The Definition of Market Completeness with Respect to an Equivalent
(Local) Martingale Measure

This section presents the definition of market completeness with respect to
an equivalent (local} martingale measure. Prior to this definition, we need
some additional structure.

We let V denote the set of price processes and assume that they are
locally bounded. Also, let A4,/ .M’!fjr denate the probability measures
in M turning all the price processes into martingales/local martingales and
whose null sets are precisely A. The elements of M, / Mﬂfi are referred
to as equivalent martingale measures/equivalent local martingale measures.

Definition 2. For Q € Mfi, the market is Q-complete if Ay = ImT is
dense in C with respect to the L' (F,, Q) topolagy.

The market is said to be @-complete with respect to an equivalent local
martingale measure @ if for any contingent claim X € C, there exists a
sequence of trading strategies such that their values converge to X in the
LY(F, Q) sense.

This notion of claseness is distinct from the t topology used in our
definition of market completeness. These different nations of closeness are
equivalent if and only if M is finite dimensional.!” This simple observation
shows why in the case where M is finite dimensional — the finite state,
finite time economy — chaoosing a definition of closeness is unnecessary.
More importantly, it also shows why, in the infinite dimensional case {e.g.,
the Black-Scholes economy), the specification of a definition for closeness
is essential.

' The backward implication is obvious. On the other hand, if the two tapologies coincide ane easily

concludes that € = LY, (). This is anly possible if dimg) co which is equivaient to dim(M} < oo,
Indeed, if dimyey.qe One can inductively construct a sequence of disjoint sets A; § = 1, whase O mass is

positive but decreases to zero fast enough sa that 2‘_ ily € {L‘(FI, @y - Cj.
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Finally, we need to make precise the meaning of no arbitrage for our
setup:

Definition 3. The market has no arbitrage (NA) if ANC . = (0}, where C.,
denotes the random variables in C which are nonnegative except possibly
onasetinN.

The market is said to satisfy NA if it is not possible to find a trading
strategy with zero initial cost that generates a time 1 value, which is always
nonnegative and strictly positive on a set which is not null.

This definition is weaker than that needed to obtain versions of the
first fundamental theorem of asset pricing when the time set is infinite
{see Dalang, Mortan, and Willinger (1990), Lakner {1993}, Delbaen and
Schachermayer (1994}, and Schachermayer (1994)]. It is weaker hecause
it does not involve the approximation of arbitrage opportunities of this sort
via {nets) sequences.

For our purposes, NA is a sufficient restriction. It guarantees that if X €
Ay, then any two trading strategies attaining X must have the same cost of
construction, thatis, X = T (x, (H*)gea) = T(X(H%}qeca) implies x = X.
Contingent claims are then unambiguously priced by their initial cost of
construction.

5. The Relationship Between Market Completeness and (-Completeness

This section clarifies the relation between the two definitions of market
completeness. This is done through a sequence of theorems and lemmas.
The first theorem gives a sufficient condition for -completeness.

Theorem 2. Let NA hold and let there exista ) € M‘:ﬁi If O is unique in

M then the market is Q-complete. When Q € M ;. then NA awtomar-
ically holds. Also, it then suffices only that Q be unigue in M .

Proagf. See the appendix.

Theorem 2 shows that under the no arbitrage hypothesis, existence and
uniqueness of a local martingale measure implies that the market is -
complete.

However, the Artzner and Heath (1995) counterexample shows that, in
general, the converse of Theorem 2 does not hold. They give an example
where the market is Q-complete, yet there exists an infinite set of martingale
measures.

To understand the relation between market completeness and Q-com-
pleteness the following lemma is useful.

Lemma 3. If NA holds then Mﬂ‘r"f,, =Py NM,.

Proof. See the appendix.
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This lemma shows the relation between local martingale measures, pos-
itive measures, and measures in the set Py,_.

Using this lemma, we see that given N A, if a local martingale measure
Q exists (the hypothesis of Theorem 1} and Q is unique in P, ,;_ (market
completeness by Theorem 1}, then (0 is unique in the class of local martin-
gale measures as well. Using Theorem 2, this insight proves the following
theorem.

Theorem 4. Ler NA hold and let there exist a € Mfi If the marker is
complete, then the marker is Q-complete.

Asthe Artzner and Heath example shows, the converse of Theorem 4 does
not hold in general. In fact, even uniqueness of  in Mﬂ‘r’i (stronger than
@-completeness} is not generally sufficient for completeness. The reason is
that although uniqueness of Q in Mﬂfi implies uniqueness in the subset of
measures in Py, which are positive, there could exist another measure in
P./— which is not positive. If so, the market is not complete by Theorem 1.
Hence, we see that the new definition of market completeness is stronger
than Q-completeness. See Battig (1997) for technical examples illustrating
these points.

Under additional hypotheses, uniqueness of Q in Mfﬁj_ does imply
uniqueness of Q in Py,;_. These additional hypatheses are given in our
last theorem, which is a result of Battig {1997):

Theorent 5. Let NA hold. Let V be finite or let all the elements of V be
processes with continuous sample paths. The market is complete if and only
if the market is Q-complete.

Theorem 35 states that if there are a finite number of price processes [e.g.,
Jarrow and Madan (1993)] or if the price pracesses have continuous sample
paths [e.g., Black and Scholes (1973), Heath, Jarrow, and Morton {1992)],
then the two notions of market completeness are equivalent, given that the
N A hypothesis holds.

Since, in practice, we always work under the N A hypothesis, the two no-
tions of completeness coincide for the typical models seen in the literature.
This 18 an important observation. It implies that the standard procedures
for testing for ¢-completeness involving the volatility matrix of the price
processes also gives market completeness under our new definition. The
standard procedures guaranteeing Q-completeness involve proving invert-
ibility of the price processes volatility matrix [see Jarrow and Madan (1995)
or Battig (1997)].

. The Artzner and Heath Counterexample Revisited

This section revisits the Artzner and Heath counterexample of the second
fundamental theorem under Q-completeness, and shows that it is not a
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counterexample to our new definition of market completeness. This section
is slightly more abstract than the preceding sections, due to the specification
of the details in the Artzner and Heath example.

Recall that Artzner and Heath’s example (reproduced below) gives an
economy that is Q-complete, but the martingale measure is not unique.
We show below that the example provided is not complete according to our
definition, hence by Theorem 1, we know that there should be more than one
martingale measure. The resolution is in recognizing that Artzner and Heath
use a different notion of closeness of random variables than our topology r.

Prior to studying their example, it is instructive to first provide an equiv-
alent characterization of our new definition of market completeness. This
characterization uses the fact that T* is the adjoint of T'.

Theorem 6. The market is complete if and only if T* mapping M into x is
injective,

Proof. See the appendix.

This theorem gives us a procedure for checking to see if the Artzner and
Heath counterexample is complete with respect to our new definition. We
need only investigate the operator T* and show that it is not injective, that
15, its kernel is nontyivial. This verification is done below.

Let Z be the set of nonnegative integers and N the set of all integers.
There is discrete trading with only two trading dates times O and 1.

We work with the filtered probability space (82, F, {Fq. F1}, P). where
the state space & = Z — {0} is the set of positive integers. The information
sets are Fg = (0,2 — {0}}, F| = F = all subsets af (Z — (0}). The
probability measure satisfies P(i} > O for ail i € Z — {0}. Otherwise the
probability measure is left unspecified.

We consider a countably infinite number of traded assets indexed by
[ € N.Their bounded price processes (hence M‘ﬂfi = M, )are given by
the following expression. The notation (Z!(j) indicates the price of asset
i€ Nattimers (forr =0, 1) given state j € Z,

Zy = ifori e N
[

zZ{(y = L)Y+ 1

1(J) (p+q)( 1)+ 14(4))

P C(q£+l_p£+l) )

Zigy = 4L _— 2 7y,

1 (p9)'(q — p) 0
P =4 (G forie N, jeZ— (0}
(pg){q —p)

Zi(j) = Z7N(—j)for —i e N, jeZ~ (0},

where c = p/(1 — p)+4q/(1 —gq) for p € (0,1} and g € (p, 1).
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In words, this expression states the following. At time 0, all traded assets
are worth a dollar. The zeroth asset pays (¢/[p + ¢]) if either state 1 or —1
occurs. The ith asset’s payoff at time I under state j fori > O is given by
c(g™ - pN) /(pqgY (g —p) if state i occurs andby (gt — p') /(pq) (g p)
if state i + | occurs. The ith asset’s payoffs are moving to the right along
the positive integer indexed assets and to the left along the negative integer
indexed assets.

The vector spaces y, ¥, C, and M are infinite dimensional here:

Y = [(x, (H)qea) € R x MA | (HY)geq has finite support}
— £2°(Q) = (f: Q= R| f is bounded}

M=0@=1f2>R[) [flw)<ox

wet

and y is the topological dual of ¥ when Y is endowed with the coarsest
topology making (T gt} .en U (g} continuous linear functionals on ¥.
The spaces for the random variables C and the potential valuation mea-
sures M are well understood. M is the topological dual of C.
Also, for (x, (H")gea) € ¥ and 0 € M we have

T(x, (H®)aea) = x + Y HNZY = Z§)

wEA

(TH()(x, (H®)aen) = Q)+ Y H” f (Z} = Z§)dp.

HEA

The linear functional T maps trading strategies into time 1 payoffs, and
the linear functional 7* gives the time 0 value of the trading strategy with
initial cost x.

For this example we can explicitly find ker T*. Indeed, a signed measure
pon Z — {0} is in ker T* if and only if #(Q) = 0and [ Z} — Zidp = 0
fori e Z.

First, this implies that f Zid,tL = 0fori € Z. Second, using the fact that

Zi (j) = Zl_f(—j) we see that 1 must solve the following equations:

A=D1 + Ziu) = 0
ZHOR(E) + 280+ Dui +1) = Ofori > 1
ZEO(=i) + Z(E 4+ Dpu(=i — 1) = 0fori = L.

On the other hand, any . satisfving these equations automatically has
total mass zero and so i € ker T*,

Note that p*(i) = —~u*(=i) = ¢' — p* for i > 1 defines a signed
measure solving the above equations and that any other such measure is a
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scalar multiple of u*. Hence
kerT* = {yu* |y € R}

The kernel for T* isnontrivial, hence T* is not injective and by Theorem 6
we do not have completeness.

7. Conclusion

This article presents a new definition of market completeness. This new
definition is independent of the notions of no arbitrage and equivalent mar-
tingale measures. Even in complex economies, like that contained in the
Artzner and Heath (1993) counterexample, this definition preserves the
second fundamental theorem of asset pricing — the market is complete if
and only if a (suitably defined) valuation operator is unique.

QOur new definition of market completeness is consistent with practice
(and the finite state, finite time economy) since it allows the existence of
arbitrage oppertunities in complete markets. For the standard models used
in the literature [e.g., Black and Scholes (1973), Heath, Jarrow, and Mor-
ton (1992), Jarrow and Madan (1993)] the new definition of market com-
pleteness is shown to be equivalent to the traditional definition, This is an
important observation as it leaves intact all of the existing theorems and
techniques for proving market completeness in the standard models.

Appendix

Rather than presenting proofs in their full technicality, we sketch the important ideas
and provide the interested reader with detailed references.

Theorems 1 and 6
Recall from linear algebra that a linear operator (matrix) between finite-dimensional
vector spaces is onto if and only if the adjoint operator {transpose matrix) is one to one.

This result can be generalized in the following way. Suppose ¥, C, M, and X are
arhitrary vector spaces and 7: ¥ — C is a linear operator. If ¥ and X', as well as
C and M, can be placed in duality and if T: ¥ — C is continuous when ¥ and C
are endowed with the topologies arising from their respective dualities, then there is a
well-defined adjoint operator T*: M — X and Im T 18 dense {(w.r.t, the topology arising
from the duality} if and only if T* is injective. See Grothendieck (1973: 82}, particularly
Proposition 26.

One easily sees that these hypotheses are met in our case by the vector spaces ¥, C,
M, and X and our linear operator T: ¥ — C defined in Section 1. In fact, the duality
for C and M is given by Equation (4). Furthermore, the topology on € ansing from
the duality is the topology t that was used in the definition of market comnpleteness and
hence Thearers 6 follows.

The definition of P,_ implies that if 9 € Py, then Py,m = {Q+p | 1 €
ker T*}. Theorem 1 now follows from Theorem 6.
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Theorem 2
The proof is by contrapasitive. By arguments similar to the ones we used above for
Theorem 6, one can show that Q-completeness is equivalent to one-to-oneness of
T*: M@ 5 ¥ where M@ i5the subspace of M consisting of the signed measures
whose Radan-Nikodym derivative with respect to @ is bounded,

If the market is not Q-complete one carn find a nonzero measure ¢« € M@ ker T*

such that @ + p is a positive measure, that is, O + o € M, |, which differs from .
lae

Furthermore, Q + 1 € MY, andif Q € M, then @ + ¢ € M, .. Finally, the

assertion that N A holds automatically if @ € M 1s well known; if X € A? NCy
then X = Qand EgX = 0, hence X = 0,

Lemma 3
Let A dencte the collection of value processes assaciated with the attainable claims as
defined in the text. If NA holds, one can show that these processes are bounded and

hence are (bounded) martingales under any @ + . € Mifi But then

(T* Q) (x, (H)wea)

1
EqT(x, (H")uer) = Eg | x + Zf HidZ;
ach “4
x = (%, (H%)peq)

for (x, (H*),z4) € ¥, which shows that M{fﬁ CP,_NM,.

For the reverse containment, one notes that @ € P,,_ N M, is a probability
measure, and since the elements of V are locally bounded, the argument is complated
by shewing that for fixed &* € A and stopping time t such that Z7, is bounded, Z?,,
is a Q-martingale.
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